فتح الله شفیعی

فتح الله شفیعی

مهندسین عمران روستای بردکوه
فتح الله شفیعی

فتح الله شفیعی

مهندسین عمران روستای بردکوه

چگونه ساختمانی بسازیم که انرژی در آن تلف نشود

چگونه ساختمانی بسازیم که انرژی در آن تلف نشود

بهینه‌سازی مصرف انرژی، امروزه یکی از موضوعاتی است که کشورها برای صرفه‌جویی در مصرف انرژی و کاهش هزینه‌های مالی آن را در اولویت کارهای خود قرار داده‌اند.در ایران نیز ظرف چند سال گذشته به این مقوله بیشتر از گذشته توجه شده است.مهندسی ساختمان یکی از عوامل تاثیرگذار در مصرف انرژی است و وسایل گرمایشی و سرمایشی در ساختمان‌ها هم که عامل مصرف یا تامین‌کننده انرژی هستند، در این میان بسیار مهم تلقی می‌شوند.به چند راهکار ساده کاملا قابل اجرا برای بهینه کردن مصرف انرژی در یک ساختمان توجه فرمایید:
اتاق‌هایی که کاربرد همانند دارند را کنار هم قرار دهید و اتاق‌هایی را که کاربرد خاص دارند از بقیه اتاق‌ها جدا کنید.
این کار به شما کمک می‌کند تا فقط اتاق‌هایی را گرم کنید که در آنها زندگی می‌کنید، مثلا نباید از فضایی که بین اتاق‌های خواب قرار گرفته به عنوان انباری استفاده کرد چون در این صورت مجبور خواهید بود، این انباری را نیز مانند اتاق‌های خواب گرم کنید و این یعنی مصرف سوخت بیشتر، هزینه‌های بالاتر و آلودگی بیشتر محیط زیست.
اگر با بازسازی توانستید مصرف انرژی را در قسمتی از ساختمان بهینه کنید، این قسمت را با در یا پرده از قسمت‌های قدیمی ساختمان جدا کنید. در این کار باید کمی سلیقه به خرج داد تا زیبایی ساختمان حفظ شود.
بخش‌هایی از ساختمان را که نیاز به آب دارند تا جایی که می‌توانید نزدیک هم قرار دهید. این قسمت‌ها عبارتند از آشپزخانه، دستشویی و حمام. با این کار طول لوله‌های آب کم می‌شود و در نتیجه حرارت کمتری از لوله‌های آب گرم به هدر می‌رود. سقف را تا ارتفاع 7/2متر پایین بیاورید.
اگر انجام این کار در تمام قسمت‌های ساختمان امکان‌پذیر نبود، می‌توانید فقط سقف بعضی قسمت‌ها را پایین بیاورید. برای این کار می‌توانید از سقف‌های کاذب نیز استفاده کنید. بالا بودن سقف باعث افزایش تلفات حرارتی می‌شود.
از طرفی بیشتر حرارت تولید شده توسط بخاری یا شوفاژ زیر سقف جمع می‌شود و قسمت پایین اتاق، گرم نمی‌شود.
یعنی هم مصرف سوخت بالا می‌رود و هم آسایش ساکنان تامین نمی‌شود. در اتاق‌هایی که امکان کاهش ارتفاع سقف به 7/2 متر وجود ندارد، نصب یک پنکه سقفی کمک بسیار زیادی به گرم کردن خانه می‌کند. بر خلاف تصور عموم، روشن کردن پنکه در زمستان با دور کم نه تنها خانه را سرد نمی‌کند، بلکه با راندن هوای گرم جمع شده در زیر سقف به پایین، دمای اتاق را یکنواخت می‌کند و از تلفات حرارت می‌کاهد.
در صورتی که امکان نصب پنکه سقفی وجود نداشته باشد می‌توان به جای آن از پنکه‌های رومیزی استفاده کرد. برای گرفتن نتیجه مطلوب باید جهت وزش باد را به طرف بالا تنظیم کرد.
در ساختمان‌های چند طبقه نباید راه‌پله‌ها را در فضاهایی که نیاز به گرمایش دارند قرار داد زیرا در این صورت هوای گرم از مسیر راه پله بالا رفته و هدر می‌رود. قسمت راه پله باید به وسیله یک در از محیط زندگی جدا شود. رعایت این نکات سبب می‌شود جریان حرارت در خانه تحت کنترل درآید و حرارت کمتری به هدر رود.
مصالح ساختمانی
استفاده از مصالح ساختمانی مناسب تاثیر فراوانی بر کاهش مصرف انرژی در ساختمان دارد. استفاده از مصالح سنگین که ظرفیت حرارتی بالا دارند، مانند بتن و آجر باعث می‌شود پایداری حرارتی خانه افزایش یابد.
یعنی با تغییر دمای هوای بیرون، ‌هوای داخل زیاد سرد یا گرم نمی‌شود.این ویژگی به خصوص در اتاق‌های جنوبی، تاثیر بسیار زیادی در کاهش مصرف انرژی و افزایش آسایش ساکنان دارد.
بنابراین هنگام بازسازی خانه خود تا جایی که امکان دارد از مصالح سنگین مانند آجر و بلوک‌های سیمانی استفاده کنید و از نصب دیوارهای سبک چوبی یا قطعات پیش ساخته سبک (به جز عایق‌های حرارتی) پرهیز کنید.دیوارهای خارجی را می‌توان از آجرهای حفره‌دار ساخت تا ظرفیت حرارتی ساختمان بالا رود. اما بهتر است بر روی این دیوار یا در میان آن از عایق‌های مناسب استفاده کرد تا کارآیی آن افزایش یابد.
اندازه و جای قرارگیری پنجره‌ها
پنجره‌ها در مقایسه با دیگر اجزای ساختمان حرارت را بیشتر از خود عبور می‌دهند. از این رو در زمستان مقدار زیادی حرارت می‌تواند از آنها هدر رود و در تابستان نیز می‌تواند مانند یک منبع حرارت عمل کرده و خنک کردن ساختمان را مشکل نماید. از این رو اندازه مناسب و جهت صحیح قرارگیری آنها نقش بسیار مهمی در کاهش مصرف انرژی یک ساختمان دارد.
تا جایی که امکان دارد پنجره‌ها را در سمت جنوب ساختمان نصب کنید و از قرار دادن هرگونه مانع، مانند درخت یا حصارهای بلند،‌ بر سر راه ورود نور و گرمای خورشید خودداری کنید.
پنجره‌های غربی را تا حد امکان کم کنید یا اصلا آنها را حذف کنید.
وجود این پنجره‌ها سبب گرم شدن خانه در بعدازظهر روزهای تابستان می‌شود. پنجره‌های شرقی اگرچه در صبح زمستان سبب گرم شدن خانه می‌شوند، اما در تابستان می‌توانند مشکل‌ساز شوند. از این رو باید تمهیداتی برای پوشاندن آنها در فصل تابستان اندیشیده شود. روی هم رفته بهتر است اندازه این پنجره‌ها نیز تا حد امکان کم شود.
پنجره‌های سمت شمال ساختمان باید تا جایی که می‌شود کوچک در نظر گرفته شود زیرا خورشید از سمت شمال تابشی ندارد و نصب این پنجره‌ها تنها باعث می‌شود حرارت بیشتری هدر رود.
برای خنک کردن ساختمان در فصل تابستان بهترین راه این است که به هوای بیرون اجازه دهیم در مواقع لازم آزادانه در کل ساختمان حرکت کند. به این ترتیب در روزهایی که هوای بیرون خنکتر از هوای داخل ساختمان است، می‌توان بدون نیاز به کولر یا دیگر دستگاه‌های خنک کننده، ساختمان را خنک کرد. بهتر است از پنجره‌هایی استفاده کنید که بتوانند به مقدار زیاد باز شوند.
عایق‌کاری
براساس مقررات ملی ساختمان، شما باید ساختمان خود را عایق‌کاری کنید تا ضریب انتقال حرارت آن از حد معینی بیشتر نباشد. مقدار عایق مورد نیاز در مناطق مختلف متفاوت است، لذا بهتر است برای تعیین مقدار عایق مورد نیاز و نصب آن از یک مشاور کمک بگیرید.
حفاظت‌ پنجره‌ها
تلفات حرارتی پنجره‌ها در زمستان حدود 25درصد از کل تلفات حرارتی ساختمان است. برای کاهش این تلفات می‌توان اقدامات زیر را انجام داد:
- نصب پرده‌های چین دار و کاملا اندازه و پر کردن فاصله بالای میله پرده.
- نصب پرده‌های کرباسی یا پرده پارسیانا در بیرون پنجره.
- نصب پنجره‌های دو جداره در جاهایی که استفاده از پرده ممکن نیست یا جاهایی که پنجره‌های بزرگ وجود دارد.
در تابستان حدود 35درصد از کل گرما از طریق پنجره‌ها وارد ساختمان می‌شود. برای کاهش این تلفات می‌توان کارهای زیر را انجام داد:
- بر روی پنجره‌های جنوبی می‌توان سایبان، حصیر یا پوشش‌های کدر قرار داد و جلوی ورود گرمای خورشید را گرفت.
پنجره‌های شرقی و غربی را می‌توان از بیرون با حصیر، پرده یا پوشش‌های کدر کنترل کرد.
نورگیرها
نورگیرها نقش مهمی در تامین روشنایی منزل دارند اما اگر خوب محافظت نشوند مقدار زیادی حرارت را در زمستان به هدر می‌دهند و در تابستان نیز باعث ورود حرارت به ساختمان می‌شوند. برای کاستن از اثرات منفی نورگیرها می‌توان این کارها را انجام داد:
- تا جای ممکن از نورگیرهای کوچک‌تر استفاده کنید.
- از شیشه‌های دوجداره یا ضخیم برای کاهش تلفات حرارتی استفاده کنید.
- در جایی که امکان دارد از سایبان استفاده کنید تا جلوی تابش مستقیم آفتاب گرفته شود.
همچنین می‌توانید از شیشه‌های تیره یا رفلکس استفاده نمایید.
- از نصب نورگیر در اتاق‌های خواب و نشیمن و پذیرایی پرهیز کنید مگر آنکه واقعا به آنها نیاز باشد.
- پنجره نورگیرها را کاملا ببندید.
کاهش نفوذ هوا
در زمستان نفوذ هوای سرد بیرون به داخل ساختمان حدود 25درصد از کل مصرف انرژی ساختمان را سبب می‌شود.
برای کاهش تلفات ناشی از نفوذ هوا می‌توان این کارها را انجام داد:
- گرفتن درز درها و پنجره‌ها به کمک نوارهای درزگیر
- نصب دریچه در دودکش شومینه‌ها و بستن دودکش بخاری‌ها در هنگامی که از آنها استفاده نمی‌شود.
- نصب فن‌هایی که دریچه آنها هنگام خاموش بودن به طور خودکار بسته می‌شود.
- بستن دریچه‌های تهویه دیواری یا سقفی که قبلا در ساختمان‌ها نصب می‌شد.
سیستم گرمایش
انتخاب وسیله مناسب برای گرمایش ساختمان دقت بسیاری نیاز دارد. در این انتخاب عوامل مختلفی چون نوع ساختمان و مصالح به کار رفته، ارتفاع سقف، وضعیت آب و هوایی و سیستم گرمایش موجود موثر هستند.
روشنایی
- بیشترین استفاده را از نور طبیعی ببرید به ویژه از پنجره‌های جنوبی.
- دیوار اتاق‌ها و دیگر قسمت‌های داخل ساختمان را با رنگ‌های روشن رنگ‌آمیزی کنید.
- در قسمت‌هایی از ساختمان که در آن زندگی می‌کنید از لامپ‌های مهتابی یا کم‌مصرف استفاده کنید.
- از نصب لامپ‌های متعدد داخل سقف پرهیز کنید
زیرا:
-مصرف برق بالا می‌رود.
- نفوذ هوا به داخل ساختمان افزایش می‌یابد.
- تعویض آنها پرهزینه است.
انتخاب مجری
در صورتی که می‌‌خواهید در بازسازی خانه خود اصول بهینه‌سازی مصرف انرژی را رعایت کنید باید کار بازسازی را به دست کسی بسپارید که در این زمینه مهارت کافی داشته باشد و دارای دانش بهینه‌سازی باشد. زیرا انجام این کار نیاز به محاسبات دقیق و تجربه فراوان دارد و هر کسی که چیزی از بنایی بداند حتی اگر تجربه زیادی هم در کار خود داشته باشد نمی‌تواند ادعا کند در بهینه‌سازی مصرف انرژی مهارت دارد

مواد تشکیل دهنده بتن

بتن از مخلوط کردن سـیمان و شن و ماسـه وآب ساختـه می شود و می توان مـواد اضافی خاصی نیز به آن اضافه نمود تفاوتهائی در انواع مختلف سیـمـان و حتی در سیـمـان هـای از نـوع خـاص وجـود دارد کـه به علـت گوناگونی مـواد اولیـه آن می باشـد همچنین تفاوت های زیادی در کیفیت شیمیایی شن و ماسه های مختلف وجود دارد که غالـبا قابل بررسی دقـیق نـیستند به این ترتیـب بتن همـواره محصولی است نامتجانس و دارای خواص متغییر .

سیمان

سیـمان پرتلند معـمولی از پر اسـتعمال ترین اـنواع سـیمان در سراسر جهـان است و قریب 90درصد از تولیدات سیمان در دنیا به این نوع اختصاص دارد طرز تهیـه آن با حرارت دادن سنگ آهک با خاک رس یا ماده مشابـه در کوره است ونتیـجه حاصل مخلوطی است حاوی مقادیر زیادی سیلـیکات کلسیـم این مخلوط که اصطلاحا سرباره نامیـده می شود سـپس در آسـیاب به پودر نرمی تـبـدیـل می گردد درصـد انـدکی گـچ (سـولـفـات کـلـسیــم ) نیـز به آن افـزوده می شود تا سفت شـدن آن در ترکیـب با آب تحت زمان بـنـدی قـرار گیـرد طی سالهـای متـمـادی انواع مختلفـی از سیـمـان پرتـلـند تـهیـه گردـیده اســت کـه مهمـترین آن عبارتـنـد از : سیـمـان پرتلند زود گیر –سیـمان پرتلند مقاوم در برابر سولفاتها-سیمان پرتلند سفید - وسیـمان پرتـلند کم حرارت همانطور که از اسـامی آنـها پـیداست هر یک از این گونـه ها دارای خواص وخصوصیـاتی اسـت کـه نسبـت به شرایـط و محل استعـمال از ارزش بسیاری برخوردار می باشـد مواد تـشکـیـل دهـنـده اـین انـواع هـمـان مـواد تـشـکـیـل دهنـده سـیـمـان پرتـندمعـمولی است و تنها نسبت ترکیبات آنها در گونـه های مختلف متفاوتند با اضافه نـمـودن مـواد دیگـر در مـوقـع تـهـیه سـیمـان بخصـوص در آسیـاب نـمــودن سـرباره مـی تـوان انـواع دیگـری از سیـمـان را به وجـود آورد کـه مـهـمـتـریـن آن عبارـتـنـد از سیـمـان پـرتـلـند بـلاسـت فـورنـیـس – سـیــمـان پرتـلند بنایی- رنگین – روغنی – واترپروف – و سیمان هیدروفوبیک

علاوه بر انواعی که ذکر گردید گونه های دیگری از سیمان نیز با استفاده از مواد اولیه دیگر قابل تهیـه است و به عنوان سـیمان غیر پرتـلند مشهورند و دارای مـصارف غیـر ساخـتـمـانی می باشند که از چارچوب بررسی های این پروژه خارج است

 سفت شدن سیمان پدیده ای است شیـمیایی بین سیمان و آب و نباید آن را با خشک شدن اشـتـباه کرد ایـن پـدیـده شیـمـیایی هیـدراتاسیـون نامیـده می شود هیـدراتاسـیـون پـدیـده ای است حرارت زا و غیـر قـابـل بازگشت . سفت شدن سیمـان تدریجـی صـورت می پـذیرد و حـدود آن در آیـیـن نـامـه هامـشـخـص شده است این سفت شـدن که منجـر به ایجاد مـقـاومت فـشاری در سیمان می گردد ممکن است تا سالها س ترکیب سیمان با آب ادامه یابد

سیمان های پرتلند

سیمان پرتلند معمولی و سیمان پرتلند زودگیر

سیمان پرتلند زودگیر که به طور مخفف(RHPC) نامیده می شود از سیمان پرتلند معمولی (OPC) نرم تر آسیاب می شود هر قدر سیمان نرم تر آسیاب شود نسبت بالا رفتن مقاومت فشـاری آن سریع تر مـی گردد هـر چنـد پس از گذشت چندین ماه نتایج مقاومت فشاری مشابـه خواهد بود به این ترتیب تنها اختـلاف مـوجـود بـیـن سیـمـان پـرتـلند معمولی و زودگیر همان سرعت کسب مقاومـت فشـاری در سیمان (RHPC ) می باشد هر چند این سرعت پس از چند روز افت کرده و نتیجه مقاومت فشاری در سیمان (RHPC ) با سیمان پرتلند معمولی برابر می گردد

سیمان پرتلند مقاوم در برابر سولفات ها

سیمان پرتلند مقاوم در برابر سولفات (SRPC) گونه ای از سیمان پرتلند است که تـنها مـقـدار انـدکـی آلـومـیـنـیـم تـری کـلیسک با فرمول (Ca3Al2O6  ) و همچنین مقداری تترا کلسیم آلومـینوفـریت به فـرمـول (2Ca2AlFeO5 ) را مـحتـوی است لازم به توضیح است که تتراکلسیم آلومینوفریت در تمام انواعسیمان پرتلند به مقدار کم وجود دارد وجود اضافه این ماده در (  SRPC) باعث بروز رنگ تیره تری در این نوع سیمان می گردد آلومینیـم تری کـلسیـک نـیز در تمـام انواع سـیمـان پـرتـلـند موجود اسـت کـه مـقـدار آن در سیـمـان (SRPC) کـاهـش داده شـده اسـت از آنـجا که سولفا ت ها با آلومینیـم تری کلیسیک ترکیب شده و در بتن ایجاد ضعف می نماید لـذا بـتـن هـایی که با این نـوع سیـمـان سـاخـتـه مـی شـونـد دارای مقـاومت بیشتری در مجاورت زمین های سولفات دار و همچنین در مجاورت دریا و برکه های حاوی سولفات می باشند

بتن های ساخته شده از سیـمـان (SRPC) در شـرایط غیر عادی بسیار مقاوم بوده  و استفاده از آن در بتن ریزی های پایین تر از سطـح زمیـن رضـایت بخـش خـواهـد بود بدیهی است درجه مقاومت این بتن در مقابل حـمـلات املاح سولفات دار بستگی به مقدار سیمان مصرفی و صحت روش بتن ریزی و همچنین مقدار سولفات موجود در خاک خواهد داشت

سیمان (SRPC ) نظیر سایر انواع سیمان پرتلند در اسید ها غیر مـقـاوم می باشد همچنین این سیمان در مقابل بعضی امـلاح نمک ها از قبـیل املاح نمـک مـنیـزیـم غیر مقاوم است این گونه نمک ها در برخی آب های طبیعی و روان یافـت مـی شوند آیین نامه (BS4027 ) در خصوصسیمان (SRPC) تهیه شده اسـت و شامـل جزیـیـات بیشتری درباره این نوع سیمان می باشد

سیمان پرتلند سفید

سیمان پرتلند سفید داری مقدار کمتری تتراکلسیم آلومینو فریت می باشد این ماده مولد رنگ خاکستری مایل به سبز در سیمان های پرتلند است بخشی از آیین نامه  BS12)) به جزییاتی درباره سیمان پرتلند سفید اختصاص یافته است برای تهـیه سیـمـان پـرتلـنـد سفـید علاوه بر سنگ آهک از خاک رس چینی نیز بجای خاک رس معمولی استفاده میشود که خود مولد رنگ سفید در این گونه سیمان است

برای کنترل و زمانبندی سفت شدن سیمان اندکی سولفات کلسیم (گچ) به آن اضافه می گردد بـدیهـی اسـت در تـهـیه سیـمـان اعمال دقـت زیاد کاملا ضروری می باشـد سیـمـان پـرتـلـنـد سـفـیـد و بـتـن تـهـیـه شـده از آن بیشتر مـصرف دکوراسیون دارد و در صورت لزوم می توانبا اضافه نمودن سایر مواد مخصوص رنگین به بتن تهیه شده از سیمان آن را به رنگ های مختلف تهیه نمود

سیمان پرتلند کم حرارت

سیمان پرتلند کم حرارت(LHPC) گونهای از سیـمـان اسـت که در آن پـدیـده ایجاد مقاومت فشاریبا سرعت کمتری صورت می گیرد و لذا نسبت به انواع دیگر سیمان های پرتلند حرارت کمتری نیز تولید می نماید وجود سرعت کمتر در کسب مقاومت فشاری به هیچ وجه موجب ضعف دربتن های تهیه شده از این نوع سیمان نبوده و تنها مدت لازم برای کسـب مقاومـت نـهـایی بیـشـتر خواهـد بـود شرایـط ایـدآل برای استفاده از این گونـه سیمـان مواقعی است که حجـم بتـن ریزی ها زیاد بوده و بروز حرارت هیدراتاسیون شدیـد بـاعث فشـارهـای داخـلی به بتن شده و مستوجب ظهور ترکیده گی می گردد نسبت مقدار مواد اولیه در این گونه سیـمـان بـا سیـمـان پـرتلند  معمولی متفاوت بوده مقادیر دقیق آن در آیین نامه( BS1370) تـوضیـح داده شده است  این آیین نامه متذکر می گردد که حرارت حاصلـه از هیـدراتاسیون نباید از60 کیلو کالری در هر کیلو گرم برای مدت هفـت روز از 70کیلو کـالـری بـر کیـلـو گـرم برای مدت 28روز تجاوز نماید حال آنکه ارقام حاصل از هیدراتاسیون سیمان پرتلند مـعـمـولـی در هـمـیـن مـدت ها به ترتیب 84و88کیلو کالری بر کیلو گرم است همان طور که قبلا نیز اشاره شد استفاده از این گونه سیمان تنها در حجم های بسیار زیاد بتن ریزی ضروری است در شرایـطـی که حـجـم بتـن ریـزی بـسیـار زیـاد نـیـسـت و تنها امکان بروز حرارت هیدراتـاسیـون اضافی وجود دارد می توان از سیمان پرتلند مقاوم در برابر سولفات استفاده نمود چه اینگونـه سیـمـان نـیز در مقایسه با سیمان پرتلند مـعـمولـی زاینـده حـرارت هیـدراتاسیون کـمـتری است لازم به تـذکر اسـت کـه مـجـمـوع حرارت تولید شده در تمام گونه های سیمان پرتلند ثابت بوده و تنها شدت و ضعف ایجاد آن در مراحل اولیه متفاوت می باشند

سیمان های پرتلند سرباره ای

این دسته سیمان هـایی هستـند کـه عـلاوه بـر مـواد اولیـه کـه در سیمان های پرتلند مورد استفاده قرار می گیرد در مــرحلـه پـختـه شـدن در سـرباره نیز مـقـادیـر مـواد شیمیایی جدید بر آنها اضافه می گردد بر اساس آیـیـن نـامـه BS12در سیمان های پرتـلنـد نــبایـد هـیـچـگونـه مـاده شیـمیـایـی بجـز مـواد اولـیـه ای که قبـلا اشاره شـد وجـود داشته باشد و لذا سیمان های این دسته را باید از سیـمـان هـای پـرتـلند مجزا نمود

سیمان بنایی

از آنجا که ملات هایی که از سیمان پرتلند معمولـی و ماسـه تـهیـه میـگردد و جـهت آجر چینی و بلوک چینی مورد استفاده قرار میگیـردبـیـش از حـد لـزوم قوی و خشن می باشد غالبا قدری آهک به ملات اضافه می نمایند اما امروزه به جای این مـخلـوط از سیمان مخصوص بنایی می توان استفاده نمود سیمان بنایی عبارتست از سـیـمان پرتلند به انضمام قدری مواد ژلاتینی (PLASTICIZERS ) بدیهی است این نوع مواد تـنـها بـرای تـهیـه سیـمـان و مـلات بـنـایـی اضـافـه می گردد و استـفـاده از آن در بـتـن های ساختمانی جایز نمی باشد و باعث ضعف شدید در مقاومت فشاری بتن می گردد

 

 سیمان هیدرو فوبیک

  در این نوع سیمان که تنها به صورت سفـارشی تـهیـه مـی گردد ذرات سـیمان به وسیله غشایی از اسیدوالئیک که ماده ای واتر پروف است (یا مواد مشابه ) پوشیده می گردد (در زمان تهیه) این گونه سیمان قـابـلیـت مقاومت در برابر هوای مرطوب را خواهد داشت و می تواند و می تواند مدت ها در شرایط رطوبتی ذخیره گرددماده غشایی روی ذرات سیمان بر اثر اصطکاک حاصل در مخلوط کن ها از سطح خارجی ذرات سیـمـان جـدا شده و امکان عملکرد طبیعی سیمـان ایجـاد خواهد گردیددر بیشتر مواقع کمتر از 5درصـد از مـاده واتـرپـروف جـهت ایجـاد مقـاومت مـورد نـظر کافی خواهد بود این ماده پـس از جـدا شـدن از ذرات سیـمـان به عنـوان ماده ای ژلاتینـی در بتن باقی خواهد ماند و تاثیر سوء قابل ملاحظه نخواهد داشت

سیمان پرتلند بلاست فورنیس

  در بریتانیا این گونـه سیـمـان تنها در اسکاتلنـد و به مقدار بسیار محدود تهیه می گردد در این گونه سیمان نسبتـی معـادل 2به1 از سیـمـان پـرتلـند با سـرباره کـوره (بلاست فورنیس) مخلوط و به صـورت پـودر در خـواهد آمـد آیـیـن نامـه BS146 ترکیبات دقیق مواد فوق را متذکر گردیـده است خواص مکانیکی این گونـه با سیمان پرتلند معمولی مشابه بوده و امـا کیـفیـات فیـزیـکی آن به سیـمـان پرتلـند کم حرارت شبیه است

تهیـه کننـدگان این سیـمـان مدعی مقاوم بودن این نـوع سیـمـان در مقـابل حمـلات سـولفـات ها نیـز می باشند آیین نامه(BS4246 ) جزییات بیشتری را درباره این گونه سیمان عرضـه مـی نمـایـد این سیـمـان در مواردی می تواند جایگزین سیمان پرتلند کم حرارت گردد

سیمان واترپروف

اگر به سیمان محلول های صابونی فلزی اضـافه گـردد بتن تهیه شده از این سیمان مقاومت بیـشتری در مـقـابـل نـفـوذ آب می آورد که اصـطلاحا آن را واترپـروف می نامیم این پـدیـده باعـث می گردد اجرام موجود در آب باران و سایر آب ها با سادگی بـیشـتری از سطـح بتـن عبور نموده و اثر کمـتری باقی بگذارند استفاده از این نوع سیمان در محل هایی که بتن جنبه دکوراسیون داشته باشد مفیـد بوده از کثیـف شدن آن در مقابل باران تا حد محسوسی جلوگیری به عمل خواهد آورد این گونـه سیمـان در انـواع سفیـد رنـگ و خـاکـستری رنگ تهـیه می گردد و بـیشـتر در قـطعات پیش ساخته بتنی مورد استفاده قرار می گیرد لازم به تذکر است که سیمان واتـرپـروف و سیمان هیدروفوبیک را در موقع لزوم می توان با هم مـخلـوط کرده و از خـواص هر دو بهرمند شد

سیمان روغنی

سیمان روغنی که استفاده محدودی در صنعت ساخـتمـان دارد تـنها بـرای پر نمودن قالب ها و پایلهای فولادی مورد استفاده قرار می گیـرد و در این نوع مـوارد غـالبـا حرارت و فشارهای بیش از حد معمول موجود می باشد

بسته بندی – حمل و نگه داری

سیمان در بندی های کیسه ای در بشکه و یا در حـجـم هـای دیگـر قـابـل حمـل و نقل است در حجم های بالا سیمان معمولا در تانکر ها حمل و تحـویـل مـی گردد وزن هـر محموله غالبا 10تن می باشد و از طریق دمیدن هوای فشرده این محموله به سیلوهای موجود در کارگاه منتقل می گردد

بسته بندی کیسه ای نیز معمولا 50کیلو گرم می باشند ممکن است در بخی کشور ها از وزن های دیگری نیز استفاده گردد و یا از کیسه هایی که حاوی حجم معینی از سیمان می شوند در کارگاه های کوچک نگهداری و استفاده از بسته بندی کیسه ای مناسب تر است لیکن در تحویل های حجمی سیمان بهای کمتری خواهد داشت نگه داری و حمل و نقل سیمان به وسیله بشکه نیز مختص مواقعی است که مدت ذخیره سازی طولا نی باشد

بدیهی است طی مدت نگه داری سیمان باید از رطوبت به دور بماند حتی در مورد سیمان هیدروفوبیک نیز زمان ذخیره سازی نمی تواند از حدود مجاز تجاوز نماید برای جلوگیری از بروز مشکلات ناشی از ذخیره سازی طولانی سیمان در کارگاه باید برنامه ریزی به نحوی باشد که ذخیره موجود در کارگاه تنها جواب گوی نیازهای کوتاه مدت سیمان باشد نگه داری سیمان در مناطق آب و هوایی مرطوب موجب بروز پدیده ای به نام سفت شدن در هوا می گردد که به صورت قطعات سیمان هیدرات شده فی ما بین سیمان موجود پدیدار می گردد این قطعات باید بلافاصله پس از مشاهده از مجتمع سیمان خارج گردیده و از بین برده شوند سیلوها معمولا در مقابل رطوبت هوا مقاوم اند معهذا ممکن است در ذخیره سازی های ذرات از مدت قطعات هیدرات شده در میان آن پدیدار شوند برای جلوگیری از واقعه بهتر است طی مدت ذخیره سازی سیمان را از دریچه پایین سیلو خارج کرده و از بال به درون سیلو پمپ نمود این عمل می تواند پس از هر بار رطوبی شدن یک نوبت صورت گیرد در صورتی که بروز قطعات هیدرات شده سیمان در سیلو بیش از حدود پیش بینی شده باشد دلیلی است بر عدم مقاومت سیلو در مقابل رطوبت هوا ولازم است سیلو ها را بازدید و تعمیر نمود

بسته بندی کیسه ای سیمان را در سطوح بالاتر از زمین نگه داری می کنند و روی آن را به وسیله یک پوشش ضد رطوبتی می پوشانند تا از فساد آن جلوگیری گردد برای این کار می توان از یک سطح چوبی که از سطح زمین بالاتر باشد استفاده نمود و روی کیسه هارا به وسیله پوشش ضد آب پوشانید لازم است پوشش روی کیسه ها از هر طرف به مقدار کافی ادامه داشته کیسه های حاوی سیمانرا بایستی به ترتیبی که به کارگاه تحویل گردیده اند مورد استفاده قرار داد تا از باقی ماندن آن برای مدت طولانی جلوگیری شود برای این منظور لازم استتحویل های مختلف کاملا مشخص گردند از آنجا که طبقه بندی سیمان بر روی یکدیگر باعث بروز سفتی در کیسه های زیرین می گردد باید از انباشتن کیسه ها به طوری که ارتفاع آن بیش از 1.5متر گردد ممانعت به عمل آورد معمولا کاغذ هایی که در بسته بندی کیسه های سیمان مورد استفاده قرار می گیرد واترپروف هستند لیکن در مقابل رطوبت مقاومت چندانی ندارند لذا بایستی پوشش روی کیسه های سیمان را حفظ نمود انواع گوناگون سیمان باید به طور مجزا در کارگاه نگه داری گردند به خصوص اگر سیمان های نوع پر آلومینیم در کارگاه مورد استفاده باشند که در دهه 60استفاده از آن ممنوع اعلام گردید کلیه استانداردهای بریتانیا تهیه کنندگان سیمان را موظف به رعایت آیین نامه ها می دانند و غالبا تهیه کننده نسبت به صحت کیفی سیمان تولیدی مسئول است مصرف کنندگان نیز ضمن رعایت احتیاط می توانند به صحت کیفی سیمان خریداری شده اعتماد نمایند

نمونه برداری و آزمایش سیمان

آزمایش کردن سیمان معمولا مستلزم استفاده از وسایل دقیق آزمایشگاهی است و به ندرت می توان سیمان را در کارگاه مورد آزمایش قرار داد در عین حال هر گاه آزمایش بر روی سیمان ضروری تشخیص داده شود نمونه برداری از آن در کارگاه صورت گرفته و به آزمایشگاه منتقل می گردد

سیمان نمونه برداری شده باید نمونه کاملی از تمام سیمان های مورد نظر بوده و در زمانی کمتر از یک هفته از تحویل سیمان به کارگاه نمونه برداری قرار گیرد برای نمونه برداری باید ابتداحداقل دوازده پیش نمونه از بخش های مختلف محموله مورد آزمایش که به فواصل مساوی از یکدیگر باشند تهیه نموده آن ها را مخلوط کرد در مورد بسته بندی های کیسه ای سیمان باید پیش نمونه ها از حداقل دوازده کیسه مختلف و به تساوی برداشته شده و مخلوط گردد نمونه مخلوط شده باید حداقل 7 کیلو گرم وزن داشته و در ظرف کاملا ایزوله شده ای بسته بندی گردد بر روی بسته مشخصات و چگونگی سیمان نمونه برداری شده یاداشت و به آزمایشگاه معتبر فرستاده شود آزمایشات لازم باید در کمتر از4هفته از زمان تحویل سیمان به کارگاه تکمیل گردد بدیهی است آزمایشات سیمان بر اساس استانداردها و آیین نامه های دقیق صورت خواهد گرفت

شن و ماسه

شن و ماسه بخشی از مواد تشکیل دهنده بتن هستند و عبارتند از قطعات سنگی شکسته شده یا رودخانه ای از آنجا که شن و ماسه بیش از 80درصدحجم بتن ساخته شده را تشکیل می دهند باید اهمیت آن را در نظر داشته و همواره از مواد متناسب استفاده نمود نوع سنگ هاییکه بیشتر در بتن سازی مورد استفاده قرار می گیرد عبارتند از خورده سنگ – ریگ – ماسه و سنگ شکسته – گرانیت یا سنگ خارا – بازلت یا سنگ مرمر سیاه و انواع پر مقاومت سنگ آهک و سنگ های ماسه ای . فهرستی از سنگ های موجود برای امور بتن سازی را می توان در آیین نامه (BS812 ) مشاهده نمود

آیین نامه های دیگری نیز در خصوص انواع و موارد استعمال سنگ در ساختمان وجود دارد که از ذکر آن صرف نظر می کنیم در عین حال علاقمندان به تحقیق در این باره می توانند از کتب زمین شناسی برای شناسایی خواص سنگ ها استفاده نمایند

خصوصیات شن و ماسه

خصوصیات لازم

مهمترین خصوصیات لازم برای شن و ماسه عبارتند از دوام و تمیزی . دوام شن و ماسه باید محکم باشند اما نباید حاوی عناصری باشند که در مجاورت هوا تغییر حجم می دهند همچنین باید فاقد عناصری باشند که تاثیرات نا مطلوب بر فولاد می گذارند به عنوان مثال می توان از ذغال سنگ – پایریت و قطعات خاک رس سفت شده نام برد ذغال سنگ باد می کند پایریت تجزیه می گردد و تولید اکسید آهن می نماید که در سطوح بتن ظاهر خواهند شد و قطعات سفت شده خاک رس نیز پس از مدتی نرم شده باعث بروز حفره در بتن میگردد در بتن های مه در آن ها حدودهای بالی مقاومت فشاری مورد نظر باشند نیاز به شن و ماسه از انواع خاص و با مقاومت و وزن مخصوص ویژه پدید خواهد آمد

تمیزی سنگ هایی که در بتن مورد استفاده قرار می گیرند باید کاملا پاکیزه بوده و فاقد هر گونه ناخالصی های نباتی باشند از سنگ هایی که دارای ناخالصی های نباتی هستند نمی توان بتن خوبی تهیه نمود قطعات و ذرات سنگ نباید گل آلود بوده یا هر گونه غشایی از خاک بر آن ها وجود داشته باشد وجود غشا خاک بر روی قطعات مانع ایجاد اتصال بین قطعات سنگ و سیمان خواهد بود به همین ترتیب وجود ذرات بشسیار ریز در ماسه نیز مانع ایجاد اتصال کامل بین ذرات سنگ وسیمان خواهد گردید و از مقاومت بتن در حد قابل توجهی خواهد کاست

تهیه کنندگان شن و ماسه برای پاک نمودن سطوح خارجی شن و ماسه از مواد زائد شل گل و خاک و غیره آن ها را قبل از تحویل شستشو می دهند وجود هر گونه مواد اضافی در شن و ماسه باعث بروز ضعف در بتن ساخته شده خواهد شد معذالک شستشو ماسه نباید از حد خاصی تجاوز نماید که باعث از دست رفتن کلیه ذرات ریز ماسه گردد چرا که این ذرات تاثیر مثبتی در زمان بتن ریزی خواهند داشت منظور از ذرات ریز ماسه ذراتی استکه از الک 0.3 میلیمتری عبور می نمایند وجود این ذرات نه تنها در چسبندگیذرات بتن به یکدیگر موثر است در صورت استفاده از دستگاه پمپاژ بتن حایز تاثیر بسزایی است

دسته بندی سنگها از نظر اندازه

سنگ های مورد استفاده در بتن از نظر دانه بندی به دو گروه شن و ماسه تقسیم می گردند ماسه عبارت است از ماسه طبیعی سنگ خورده شده یا ریگ خرد شده و مواد مشابه که از الک با توری 5میلیمتری عبور می نماید شن عبارت است از موادی نظیرریگ سنگ خرد شده و غیره که از الک با توری 5میلیمتری عبور نمی نمایند بدیهی است وجود مقدار بسیار اندک از ذرات بیش از5میلیمتر در ماسه و ذرات کمتر از 5میلیمتر در شن قابل اغماض خواهد بود

ابعاد ذرات شن و ماسه

حداکثر انداز سنگ بسته به کیفیت بتن مورد نیاز و نوع کار متغییر خواهد بود برای بتن مسلح لازم است ابعاد سنگ طوری انتخاب شوند که مانع از بروز اشکال در زمان بتن ریزی گردد و در عین حال فواصل بین فولاد و قالب بندی و همچنین گوشه ها و منافذ از بتن پر گردند به این علتاست که جهت بتن مسلح معمولا از شن های با قطر کمتر از20میلیمتر استفاده می گردد البته در مواقعی که امکان استفاده از شن با قطربیش از 20میلیمتر وجود داشته باشد استفـاده از ارجحتر است در بتن ریزی فنداسیون ها و جایی که حجم های بالایی از بتن ریزی مورد نظر است می توان از ابعاد بالتر شن استفاده منود ابعاد شن کمتر از 20میلیمتر نیز ممکن است در بعضی از اشکال بتن مسلح که فواصل فولاد و قالب اندک است ضروری افتد

در ساختمان های عظیم بتنی مثل سدهای بتنی از قطعات شن بزرگ نیز استفاده می گردد که می توان بر آن قلوه سنگ نام نهاد این قطعات ممکن است بیش از 20 سانتیمتر قطر داشته باشد البته این گونه قطعات با بتن مخلوط نمی گردند بلکه در زمان بتن ریزی به صورت لایه ای در سطوح مختلف جایگذاری می گردند این روش مستلزم نیروی انسانی زیاد و دقت فراوان می باشد و امروزه کمتر از این گونه روش ها استفاده می گردد

دانه بندی شن و ماسه

نسبتی که از مخلوط کردن ذرات شن یا ماسه با اندازه های مشخص تنظیم می گردد به دانه بندی در شن یا ماسه معروف است و از طریق عبور ذرات از سیستم الکل های با انداذه های گوناگون به عمل می آید دانه بندی معمولا به عنوان  درصد وزنی از اندازه های خاص که از الک مربوطه عبور نموده است مطرح مگردد و شن یا ماسه دانه بندی شده به گروهی اطلاق می گردد که از اندازه های مختلف به مقدار مشخص در آن موجود باشد این اندازه ها از بزرگترین قطعات متشکله تا کوچکترین ذرات ادامه خواهد داشت و در غیر این صورت دانه بندی ناقص خواهد بود شن و ماسه با دانه بندی ناقص برای بتن ریزی های معمولی ایده آل نبوده هر چند در موارد خاص می توان از این گونه‌دانه بندی نیز استفاده نمود آیین نامه (BS410) ابعاد الکها را جهت انجام دانه بندی مشخص می نمایدکه ذیلا اشاره می گردد ابعاد الکهای مورد استعمال بزرگ و کوچک عبارتند از 75-63

اندازه مجاز برای ماسه هایی که از سنگ شکسته تهیه می گردد تا 20 درصد قابل قبول خواهد بود این درصد جدا از 5 درصدی است که ذیلا به ان اشاره می گردد بر اساس آیین نامه دانه بندی ماسه باید بر اساس یکی از زونهای مشخص شده باشد مگر در مواقعی که دانه بندی به صورتی خارج از چارچوب زون خاصی قرار بگیرد و به جز الک از 5 درصد می تواند بین چند الک تقسیم گردد مثلا یک درصد برای یک الک و 4 درصد برای الکی دیگر یا 2 درصد برای یک الک و 3 درصد برای سه الک دیگر دانه هایی که 75 میکرون کمتر و از 37.5 میلی متر بیشتر باشند قابل قبول نخواهند بود

 

شن و ماسه های ساحلی

بعضی شن و ماسه ها از مناطق ساحلی و رود خانه ای تهیه می گردند که غالبا دارای مقادیری نمک و عناصر صدفی هستند این گونه مواد معمولا ضرر چندانی در بتن مسلح معمولی ایجاد نمی کنند اما مقدار این املاح نباید از حدود قابل قبول متجاوز باشد در عین حال استفاده از این گونه شن و ماسه جهت ساخن بت مسلح پیش تنیده ممنوع می باشد وجود قطعات صدف شکسته شده در شن و ماسه تاثیر سو در بتن ه جای نمی گذارد اما از نظر اجرایی در ضمن بتن ریزی موثر خواهد بود یکی از اشکالات موجود در ماسه های تهیه شده از سواحل رود خانه ای برابر بودن بیشتر ذرات آن است که از نظر دانه بندی با اشکال همراه خواهد بود همچنین ماسه های سواحل دریا ضمن این که اندازه خاص می باشد دارای مقادیر بسیار زیادی املاح نمکی هتند و به جز در مواردی که کاملا شسته شده و مقدار املاح آن در آزمایشگاه تعیین و تصویب گردیده باشد قابل استفاده در بتن نمی باشد

سنگ های سبک و مصنوعی

علاوه بر سنگ شکسته و ریگ شمار دیگری از سنگ ها قابل تهیه و استفاده در بتن سازی است تفاله های باقیمانده در کوره های آجرپزی و غیره که در مجاورت هوا خنک شده باشد به عنوان زباله محسوب می گردد اما طبق آیین نامه ها قابل استفاده در بتن سازی است رومی ها برای انجام کارهای ساختمانی خود از سنگ پا استفاده می نمودند از این گونه سنگ های متخلخل هنوز هم در بتن سازی استفاده می گردد لیکن استفاده از سنگ های مصنوعی سبک رایج تر می باشد تمامی سنگ های مصنوعی سبک وزن از نظر مقاومت ضعیف تر هستند که به علت وجود خلخل و فرج در آن ها است این امر باعث بروز محدودیت در بتن تهیه شده از آن ها می گردد لاکن این محدودیت غالبا مشکلی ایجاد نمی کند زیرا علاوه بر وزن کمتر بتن مقاومت فشاری آن ها اکثرا در حد قابل قبول است سنگ های سبک برای تهیه قطعات سبک تر ساختمانی و همچنین برا داشتن ارزش های ایزولاسیونی حرارتی شان در در بتن سازی استفاده فراوان دارند علاوه بر مواردی که ذکر گردید مصالح مصنوعی دیگری نیز به جای شن و ماسه در بتن مورد استفاده قرار می گیرد برای مثال می توان از قطعات فولادی یا سربی نام برد که بتن تهیه شده از آن ها بسیار سنگین بوده اما دارای مقاومت بسیار در مقابل تشعشعات هسته ایست ساختن و استفاده از این گونه بتن مستلزم تخصصهای خاصی است

نگه داری شن و ماسه                                                                                  

در کارگاه ها سنگ ها باید به طرزی نگه داری گردند تا ضمن آسان بودن برداشت و استفاده از آن ها با یکدیگر مخلوط نگردیده و در عین حال کمتر به هدر بروند برای این منظور می توان یک سطح محکم بتنی به عنوان انبارگاه مصالح استفاده نمود یک سطح وسیع از بتن مگر که شیب کافی جهت خارج نمودن آب از محوطه و دور نمودن آن از اطراف مخلوط کن کافی خواهد بود سطح مذکور حتما باید دارای قابلیت زهکشی باشد این موضوع به خصوص در مورد سنگ هایی که از سواحل دریا تهیه شده و شسته شده اند ضروری است انبارگاه شن و ماسه باید حتی المقدور وسیع در نظر گرفته شود چه این امر باعث یک نواخت نمودن رطوبت در میان مصالح خواهد بود در صورت امکان بهتر است شن و ماسه پس از تحویل در کارگاه و قبل از استفاده در بتن به مدت حداقل 12ساعت در انبارگاه باقی بماند در موقع استفاده از ابارگاه باید از برداشتن مصالح از قسمت پایین مصالح خوداری به عمل آورد چه بیش تر کثافات مصالح از قسمت های فوقانی در قسمت های تحتانی متراکم گردیده اند

سنگ های با ابعاد مختلف باید جدا از یکدیگر نگه داری گردد این امر به وسیله دیوار های تفکیکی صورت می پذیرد در این ارتباط لازم است از مخلوط شدن سنگ های با اندازه های مختلف در زمان تخلیه با جلوگیری به عمل آورد بهترین محل برای جاسازی انبارگاه به ترتیبی است که مخلوط کن ها در مرکز انبارگاه قرار گیرند بدیهی است این امر محدودیتی برای جاگذاری انواع مختلف سنگ ایجاد نخواهد کرد

نمونه برداری و آزمایش شن و ماسه

آزمایش بر روی شن و ماسه ممکن است ضروری گردد اولا به عنوان تضمینی برای مناسب بودن سنگ قبل از شروع عملیات بتنی و سپس به علت تایید تناسب آن فی ما بین عملیات و ثالثا جهت تعیین درصد آب موجود در شن و ماسه چه این اندازه گیری برای تضمین وزن آب لازم در مخلوط بتن روش های آزمایش بر روی شن و ماسه در فصل دهم بررسی خواهد گردید

آب

آب مورد استفاده در بتن سازی باید قابل آشامیدن باشد و یا از منبع قابل قبولی تهیه گردد چه آب های که در طبیعت یافت می شوند قبل از تصفیه شدن حاوی مقادیری نمک های محلول یا غیر محلول و همچنین مقادیری عناصر نباتی هستند که تا تاثیرات بدی در کیفیت بتن ساخته شده خواهد گذارد علی الخصوص در سفت شدن و محکم شدن آن در صورت وجود هر گونه تردید در مورد کیفیت آب موجود بهترین راه آزمایش آب در آزمایشگاه و همچنین انجام آزمایش مقاومت فشاری بر روی بتن ساخته شده با این آب و مقایسه آن با نتیجه آزمایش مقاومت فشاریدر بتن ساخته شده با آب مقطر است

استفاده از آب دریا تاثیر نا مطلوبی در کیفیت و یا مقاومت فشاری بتن تهیه شده نخخواهد داشت اما استفاده از این آب در بتن مسلح و یا بتن پیش تنیده توصیه نمی گردد این امر باعث بروز زنگ زدگی در فولاد می گردد و همچنین در شکل ظاهری بتن تاثیرات بدی دارد

انضمامات

انضمامات موادی را می نامیم که در موقع مخلوط کردن بتن به آن اضافه می گردد هدف از این عمل افزایش بعضی خواص بتن است باید به خاطر داشت که این دسته موادی هستند که در موقع مخلوط کردن به بتن اضافه می گردند و با مواد شیمیایی که در موقع تهیه سیمان به آن اضافه می شود و در بخش های گذشته مورد بررسی قرار گرفت متفاوتند هر چند استاده از مواد گروه قبل نیز برای تقویت بعضی خواص سیمان و نتیجتا بتن صورت می گیرد کلیه سیمان های نوع پرتلند در زمان پخته شدن در کوره به حداقل یک ماده شیمیایی گچ علاوه می گردند چه بدون وجود این ماده سفت شدن در بتن به تاخیر افتاده و زمان اجرا باعث بروز اشکالات بسیار است بیشتر انضمامات از نظر بها ارزان هستند اما نگه داری و مخلوط کردن آن ها با بتن در مخلوط کن مستلزم دقت و زمان بوده و مشکلاتی که در این زمینه ایجاد می نماید جبران قیمت ارزان آن را خواهد نمود اضافه نمودن مواد اضافه شونده در صورتی که بیش از حدود تعیین شده باشد دارای تاثیرات معکوس است و باید از بروز آن جدا جلوگیری شود در بیشتر مواقع می توان به جای استفاده از انضمامات با طرح مخلوط مناسب در بتن یعنی تعیین شن و ماسه و سیمان و آب دقیق در مخلوط به همان مزایا دست یافت و از گرفتاری های ناشی از استفاده انضمامات به دور ماند

در بازار مصالح ساختمانی از اسامی گوناگونی به عنوان انضمامات مشاهده میشود که دارای عناوین دهلن پرکنی می باشند اما این اسامی بیش تر جنبه تبلیغاتی دارد و کلیه آن ها را می توان به سه گروه تقسیم نمود مواد سرعت زا مواد کند کنندهو مواد کاهش دهنده آب در آیین نامه (BS5075) چگونگی این مواد تشریح گردیده است ذیلا به بررسی آن ها می پردازیم

مواد سرعت زا

کلرید کلسیم پر استعمال ترین ماده سرعت زا است این ماده به تنهایی یا همراه با مواد دیگر به بتن اضافه می گردد

یکی از خطرات مهم در استفاده از کلرید کلسیم تاثیرات زنگ زنندگی آن بر فولاد است و به اکسید شدن فولاد در بتن های مسلح پیش تنیده کمک خواهد کرد لذا استفاده از آب در بتن های مسلح پیش تنیده به کلی ممنوع بوده و بهتر است در بتن هایمسلح نیز استعمال نگردد کلرید کلسیم به هیچ وجه نباید با بتن های ساخته شده از سیمان پرتلند مقاوم در برابر سولفات ها آمیخته شود چه تاثیرات ضد سولفات این سیمان را خنثی می نماید و لذا فنداسیون هایی که با سیمان مقاوم در برابر سولفات ها ساخته شود نباید از این ماده استفاده کرد

استفاده از مواد سرعت زا در ملات ها به علت وجود حجم کم سیمان در آن ها بدون تاثیر بوده و نمی تواند با تولید حرارت کافی جلو یخ زدن ملات را در هوای سرد بگیرد به علاوه کلرید کلسیم دارای تاثیر ضد آب در آجر چینی است که ممکن است منجر به ایجاد رطوبت در دیوارها گردد

مواد سرعت زا تحت عناوینی چون سفت کننده ها ضدیخ ها و حتی واترپروف ها در بازار عرضه می گردند که تا اندازه ای از حقیقت بدور است

کلرید کلسیم را می توان مستقیما در حالت جامد خریداری نمود شکل ظاهری آن به صورت نمک یا ذرات ریز پوسته ای است که در فرم کریستال می باشد

کلرید کلسیم قبل از مخلوط شدن در بتن باید در آب حل شود برای اجتناب از اشکالات موجود در استفاده از کلرید کلسیم دست اندرکاران مشغول تهیه انضمامات بدون کلر می باشد

انضمامات کاهش دهنده آب

بعضی مواد شیمیایی باعث بروز حالت دفع کنندگی بین ذرات سیمان می گردند که این حالت خود مستوجب بروز لیزی بین ذرات خیس سیمان است و آن ها را جدا از یکدیگر به حرکت در می آورد وجود این حالت اعث می گردد که برای دستیابی به کارایی لازم در بتن به مقدار آب کمتری نیاز باشد در واقع این مواد شیمکیایی تقویت کننده نقش آب در بتن هستند و به نام انضمامات کاهش دهنده آب قابل شناسایی اند

از آنجا که کاهش در مقدار آب در بتن باعث تقویت در بعضی خواص آن می باشند بازرگانان و تهیه کنندگان انضمامات گذارده اند ماده اولیه تشکیل دهنده این دسته انضمامات کلسیم و گاهی سیدیم است در حالت های کلسیم لیگنوسولفونات که از تولیدات فرعی در صنایع چوب می باشند این ماده به نم های سولفیت لای ولیکنین نیز معروف است در تجارت بهصورت مایع قهوه ای رنگی که دارای بوی مشخص و مشمئز کنندهای است تولید و عرضه می گردد با اضافه نمودن نسبتی معادل 0.002 وزن از این ماده به سیمان مصرفی در بتن می توان مقدار آب لازم در بتن را 10 درصد کاهش داد بدون آنکه در کارایی بتن از نظر اجرایی خللی وارد گردد با وجود این خاصیت می توان در مقدار سیمان مصرفی نیز صرفه جویی نمود بدون آنکه در مقاومت فشاری بتن تغییری حاصل گردد و لذا در قیمت بتن تهیه شده صرفه جویی به عمل خواهد آمد در عین حال برای احتیاط نباید مقدار سیمان را از حداقل مقدار تعیین شده کاهش داد

مواد قندی موجود در چوب را می توان از طریق شیمیایی خارج نمود این مواد که در لیکنو سولفونات وجود دارد باعث بوز ترمز کنندگی در بتن است به این معنی که از حررارت حاصله در بتن میکاهد که این خاصیت خود ممکن است مورد استفاده قرار گیرد برای مثال می توان در مناطق گرمسیری و حاره برای بتن ریزی از این کیفیت لیگنوسولفونات قندار استفاده نمود هر چند استفاده از این ماده تنها به عنوان ماده کاهش دهنده آب صورت می گیرد و برای ایجاد کیفیت ترمز کنندگی می توان از ترمز کننده های پلاستیکی استفاده نمود که سفت شدن اولیه بتن را به تاخیر انداخته امکان بتن ریزی های پر حجم و طولانی را ایجاد می نماید لازم به توضیح است که خاصیت ترمز کنندگی مواد ترمز کننده تنها زمان سفت شدن اولیه بتن را به تاخیر می اندازد و در کسب مقاومت فشاری در بتن تاخیر چندانی ایجاد نمی کند و لذا به هیچ عنوان نباید با بتن هایی که از سیمان پرتلند کم حررارت تهیه می گردند اشتباه شوند

انضمامات هوادار یا متخلخل کننده

بتن های هوادار دارای دوام و عمر بیشتری از بتن های بدون هوا در مقابل تاثیرات یخبندان و نمک ها هستند و همچنین در مقابل مایعاتی که به عنوان مواد ضد یخ بندان در زمستان بر روی سطح جاده ها و باند فرودگاه ها استفاده می شود داری مقاومت بیشتری می باشند

حباب های هوا در بتن تولید کیفیت پلاستیکی می نمایند و مستلزم اعمال تغییراتی در نسبت مواد تشکیل دهنده مخلوط هستند برای بتن هایی که از شن 20mm

تعریف بتن بتن(concrete) :بتن کلمهای لاتین است چندین سال پیش دکتر قالیبافان با ارایه یک مقاله ی چند صفحه ای در دانشگاه تهران ثابت کردند که این کلمه نباید به صورت "بتون" نوشته شود و صحیح آن "بتن"می باشدبتن محصول و نتیجه ی اختلاط سنگ دنه و آب است با درصد وزنی مشخص از هر کدام که با گذشت زمان و در معرض هوا به صورت جسمی به هم چسبیده و سخت در می آید در پارهای از موارد در بتن از مواد افزودنی خاص نظیر هوازا-میکروسیلیس ها-روان کننده ها و فوق روان کننده ها به منظور تامین بیش تر و یا بهبود و یا تغییر بعضی از خواص مورد نظر استفاده میشود برای شناخت ویژگی های هر کدام از اجزا بتن لازم است ابتدا ویژگی های بتن مرغوب را بشناسیم ویژگی های بتن مرغوب1-کارآیی                2-مقاومت                       3-پایایی کارآیی بتن:به بتن کارا میگویند که در پنج مرحله ی :ساخت-حمل-جادادن-تراکم و پرداخت باکلیه ی ضوابط مربوطه:اولاً :از نظر اجرایی مشکلی ایجاد نکرده و کار با آن به راحتی و با صرف انرژی معقول انجام گیرد ثانیاً : بتن یک پارچگی و یک نواختی خود را از دست ندهد یعنی اجزا آن از هم جدا نشود به دو صورت ممکن است جداشدگی در بتن اتفاق افتد:a)    جدا شدگی مصالح از خمیر سیمان (segregation) یعنی جدا شدن مصالح ریز دانه و خمیر سیمان از یک دیگر بتنی که پس از جدا شدن مصالح مصرف شود مقاومت لازم را نخواهد داشت زیرا پر از حباب هوا وحفره می باشد b)    آب زدگی یا رو زدگی (bleeding): در این حالت دوغاب سیان از سنگ دانه جا شه و روی بتن قرار می گیرد    این عامل برای بتن نا مطلوب است و مقاومت آن را به شدت کاهش میدهداگر دوغاب سیمان که به صورت روزدگی روی بتن ظاهرمیشود بدون سیمان باشد یعنی به صورت آب زلال برد در صورت تبخیر و یا جمع کردن آن مقاومت بتن افایش می یبد زیرا نسبت آب به سیمان مخلوط کم تر می شود (میتوان آب را به روشیجمع کرد و یا باقی گذاشت تا تبخیر شود )مقاومت : منظور از مقاومت بتن تاب فشاری آن میباشد که با انجام نمونه گیری و پس از شکستن نمونه محقق می شود معیار سنجش مقاومت بتن مقاومت فشاری 28 روزهی نمونه ی آزمایشگاهی می باشدپایایی : دوام و پایداری بتن در برابر عوامل خورنده ی خارجی در طول عمر مفید بتن را پایایی می نامندممکن است بعد از گذشت سال ها مسایل پایایی بتن به رخنمون نماید یعنی کیفیت مصالح تشکیل دهندهی بتن آن قدر کاهش یابد که ایمنی و قابلیت بهره برداری سازه را به خطر اندازد عوامل تقلیل دهنده ی پایایی بتن:  1-انواع سایش ها (عامل مکانیکی)         2-انواع یخ زدن ها (عامل فیزیکی)      3-انواع خوردگی ها "اعم از میل گرد و بتن "(عامل شیمیایی)حتی عدم استفادهی صحیح از نوع سیمان خاص می تواند موجب خرابی بتن شود مثلاً سیمان تیپ5 کاملاً ضد سولفات است ولی اگر در جایی به کار رود هم زمان ین سولفات و کلر در ان وجد داشتهباشد نه تنها مفید نخواهد بود بلکه باعث افزایش روند خوردگی میل گرد مدفون در بتن میشود [مانند سواحل جنوبی کشور] مصالح بتنی میباید چه ویژگی هایی داشته باشد تا بتواند خصوصیات لازم برای یک بتن مرغوب را فراهم سازد در زیر مصالح تشکیل دهنده ی بتن و ویژگی های عمده ی آن ها بررسی می شود مصالح سنگی مصالح سنگ دانه حدود 70 درصد حجم و نیز حدود 70 تا 75 درصد وزن بتن راتامین میکند لذا می باید توجه خاصی نسبت به کیفیت آن ها مبذول شود زیرا کوچک ترین تغییر  در آن ها سبب تغییزات زیادی در کیفیت بتن میشود مصالح سنگ دانه عمدتاً به صورت های زیر تهیه می شود A.   مصالح طبیعی گرد گوشه (رودخانه ای) سنگ دانه به دست آمده از مصالح طبیعی رودخانه ای حاصل فرسایش و هوازدگی توده هایی است که آب آن ها را با خود آورده و در بستر رودخانه دپو کرده و یا در دانه ی تپه ها یافت میشود و معمولاً به منظور مصرف شسته و دانه بندی می شود تا در محدودهی مشخصات قرار گیرد مصالح رودخانه ای به صورت گرد گوشه می باشند و ویژگی اصلی آن ها همین گرد گوشه بودن آن ها است با توجه به نوع سنگ مادر آن ها میزان گرد گوشه بودن آن ها متفاوت است جنس این سنگ ها معمولاً غیریک نواخت می باشد زیرا توده هایی هستند که در اثر سایش پدید آمده اند B.                        مصالح شکستهبرای تهیه این مصالح از سنگ معادن استفاده می شود و دستگاه کوبیت "سنگ شکن" شکسته می شوند اگر سنگ دانه های طبیعی برای دانه بندی توسط دستگاه شکسته و سرند شوند این سنگ دانه ها مصالح طبیعی شکسته هستند از ویژگی های مصالح شکستهی معدنی وجوه شکسته در سنگ و تقریباً یک نواخت بودن جنس آن ها را می توان نام برد C.                        مصالح ترکیبی       این مصالح ترکیبی از مصالح طبیعی و شکسته می باشند و بسته به شرایط اقتصادی و اجرایی تر کیبی از این مصالح استفاده می شود در شیراز معمولاً از مصالح طبیعی شکسته استفاده می شوددانه شککسته به دانه ای اطلاق می شود که حداقل در سه وجه شکستگی داشته باشد و درصد شکستگی برای شن ها حداقل 85درصد میباشد یعنی 85درصد مصالح شن باید دارای سه وجه شکسته باشد هر سه سنگ دانه ی ذکر شده را می توان در بتن استفاده کرد مشروط بر این که سه ویژگی مهم کارایی مقاومت و پایایی را تامین کنند برای رسیدن به این ویژگی ها باید مصالح به دو دسته ریز دانه و درشت دانه تقسیم شوند در استانداردهای موجود ASTM(آمریکا ) – B.S(انگلستان) و DINآلمان تقسیم بندی مصالح سنگی به صورت زیر تعریف شده است: ذرات حدود 5میلی متر به پایین را ماسه و 5 میلی متر به بالا را شن اطلاق می نماینددر مقطع یک بتن خوب باید اسکلت اصلی بتن درشت دانه باشد و ریز دانه ها اطراف درشت دانه ها را به خوبی پر کرده و کل این مجموعه به وسیله ی خمیر سیمان کاملاًبه هم چسبیده باشنداگر به جای ریز دانه ها خمیر سیمان جای گزین شود بتن ضعیف خواهد بود و اگر بتن تنها با شن و خمیر سیمان بدون نرم دانه (ماسه)باشد وزن مخصوص آن بسیار کم خواهد شد زیرا پر از حفره است در انگلستان از ترکیب شن و سیمان بتنی متخلخل به نام کاورنو میسازند این بتن دارای دانسیته کم و تخلخل زیاد بوده و برای عایق بندی استفاده میشود و برای سازه های بتنی مناسب نمی باشد هر چه دانه های شن درشت تر باشد فضای خالی اطراف آن ها در بتن کاهش می یابد و همچنین آب کمتری برای مرطوب کردن سطوح آن ها مورد نیاز است مثلاً در یک مکعب به ابعاد 2*2*2سانتی متر مجموع سطح خارجی برابر 24 سانتی متر مربع است و اگر همین مکعب به مکعب هایی به ابعاد 1*1*1سانتی متر تقسیم شود هشت مکعب حاصل می شود –که جمع سطوح خارجی مکعب ها برابربا 48سانتی متر مربع می شود پس با تبدیل مکعب 2*2*2به مکعب های 1*1*1حجم کل ثابت مانده در صورتی که جمع سطوح خارجی دو برابر شده است  بنابرین در یک حجم ثابت بتن هر چه دانه ها ریزترباشد میزان آب مورد نیاز برای خیس کردن سطوح خارجی بیش تر می شود و برای تامین کارایی مناسب نیاز به آب بیش تری می باشد که این عامل باعث کاهش مقاومت می شود در غیر این صورت برای یک نسبت آب به سیمان ثابت نیاز به سیمان بیش تری نیز می باشد در نتیجه بتن غیر اقتصادی می شود لذا هر چه شن درشت تر باشد نتیجه آن کاهش آب مصرفی و افزایش مقاومت بتن خواهد بود از طرفی هر چه شن درشت تر باشد چسبندگی خمیر سیمان و سنگ دانه کاهش می یابدو اطراف میل گردهای مدفون در بتن و نیز گوشه قالب ها کاملاً پوشیده نمی شود لذا می باید برای اندازه شن محدودیتی قایل شدحداکثر اندازه ی مصالح درشت دانه  حداکثر اندازه یدرشت دانه در بتن مسلح به عوامل زیر بستگی دارد :1)   ابعاد قالب و فاصله ی بین میل گردها2)   اندازهی توصیه شده ی حداکثر توسط آیین نامه ها بر اساس آیین نامه ی بتن ایران: حداکثر اندازه با توجه به ابعاد قالب و فاصله ی میل گرد ها به کوچکترین مقادیر زیر محدود می شود :1)   یک پنجم کوچکترین بعد داخلی قالب 2)   یک سوم ضخامت دال (یک چهارم توصیه می شود )3)   سه چهارم حداقل فاصله ی آزاد بین میل گردهاهمچنین آیین نامه ی مذکور توصیه می نماید که اندازهی اسمی ترجیحاً از 2/3سانتی متر (25/1اینچ) بیش تر نشود بنا برین حداکثر اندازهی درشت دانه ، کوچک ترین اعداد بالا، یعنی 3سانتی متر انتخاب می شودنامه چنین بیان می کند که در بتن مسلح معمولی با افزایش اندازه ی شن تاحداکثرقطر حدود 3 سانتی متر مقاومت افزایش می یابد و بعد از آن مقاومت کاهش پیدا میکند زیرا چسبندگی کافی بین خمیر سیمان و سنگ دانه ها تا قطر 3سانتی متر وجود دارد اما بعد از آن کاهش می یابد در کارهای اجرایی بهتر است از دانه بندی حدود12تا25میلی متر یعنی شن بادامی استفاده شودو در کارگاه هایتولید شن در شیراز معمولاً حد بالا5/2 سانتی متر می رسد اما در بتن ریزی های حجیم این اعداد قابل عمل نخواهد بود یعنی در بتن ریزی حجیم بدون میل گرد از دانه بندی 5تا10 سانتی متر استفاده می شود در بتن های غوطه ای با عیار کم سیمان که برای پر کردن چاهک ها کانال ها  و غیره استفاده می شود معمولاًاز شن حدود 10 سانتی متر استفاده می شود (شن زیر سرندی درشت که ابتدا شکسته می شود و سپس در بتن غوطه ای مصرف می شود )شن نخودی  این شن دارای دانه بندی بین 5تا12 میلی متر می با شد که دانه بندی ریز بوده  و بیش ترین مورد استفاده ی آن در سقف های تیرچه و بلوک و قطعات با ضخامت کم تر از 6 سانتی متر می باشد الک های رایج دانه بندیالک نمره ی 4 : این الک دارای چشمه هایی به ابعاد 75/4 *75/4 میلی متر می باشد و تعیین کننده حد و مرز بین شن و ماسه است در بتن می یابد مصالح ریز دانه پر کننده که فیلرنایده می شود به میزان کافی وجود داشته باشد یعنی پر کننده ای که کارایی مناسب ایجاد می کند برای این نرم دانه ها مصالح گذشته از الک نمره ی50 حدود 15درصد و الک نمره ی 100 حدود 5درصد ماسه مصرفی توصیه می شود هر چه عیار سیمان بال رود افت بیش تری در بتن تازه خواهیم داشت و هیچ گاه افزایش مقدار سیمان بیش از حد معمول نمی تواند کارایی فیلر را داشته باشد ذرات ریز تر از اندازه ی الک نمره ی 200به قطر 75میکرون برای بتن نا مناسب هستند زیرا این ذرات ریز اغلب رس یا سیلیت می باشند که با کا هش دادن چسبندگی و جذب آب بتن مقاومت آن را کاهش می دهند در حال حاضر حدود 15معدن فعال تولید شن وماسه در شیراز وجود دارد که اکثراًدر جاده ی سپیدان واقع شده است –و بدون استثنا همگی ماسهای با دانه بندی خشن و درشت ارایه می دهند در تمام آیین نامه ها یک ویژگی برای ماسه به نام مدول نرمی (FINENEESS MODULOUS) تعریف شده که معیار زبری و نرمی ماسه است و بایستی بین 3/2 تا2/3 باشد اگراز3/2 کمتر باشد ماسه خیلی نرم ودارای سطح نرمی زیاد است وماسه ی بالای مدول نرمی 2/3 خحشن و درشت می باشددر حال حاضر معادن شیراز برای تولید ماسه به جای سرند نمره ی 4 از سرند8/3 اینچ (حدود چشمه 5/9میلی متر)استفاده می کنند یعنی به جای دانه ی حدود 5 میلی متر دانه حدود10میلی مترتولید می شود که صرفاً جنبه سود جویی دارد و با توجه به تفاوت ریالی نرخ شن و ماسه تولید شن به عنوان ماسه اقتصادی تر است تقریباً در تمام کارگاه های تولید شن و ماسه در شیراز حدود 30درصد از مصالح مربوط به شن (5تا9 میلی متر ) وارد ماسه می شود و با همان قیمت ماسه به فروش می رسد نحوه ی نصب دستگاه ماسه شور و انجام کار شستوشوی ماسه در تمیزی آن بسیار مهم است عدم رعایت زاویه مناسب دستگاه شستوشو باعث خروج مقدار زیادی نرم دانه –هنگام شستوشومی شودمشکل عمده ی ماسه علاوه بر میزان خاک موجود در آن آلودگی ناشی از نمک ها و سولفات  ها می باشد آلودگی نمک ها با شستن از بین میرود اما سولفات ها با شست از بین نمی رود اشکال دیگر وجود مواد آلی –که ناشی از ریشه های پوسیده ی گیاهی هستند –می باشد سنگ دانه ها نباید به هیچ وجه وارد واکنش های شیمیایی در بتن شوند لذا کنترل می کنیم که سنگ دانه هایی که در بتن مصرف مبشوند از این نظرقابل قبول باشند میزان تمیزی ماسه از خاک با درصد گذشته از الک نمره ی 200، نسبت مستقیم دارد در آزمایشگاه، میزان تمیز بودن ماسه با آزمایشS.E (sand equivalent ) یا ارزش ماسه ای تعیین می شود ماسه مصرفی در بتن مسلح بایستی دارای S.E بزرگتر یا مساوی 80باشد و در آسفالت. S.E بزرگتر یا مساوی 60قابل قبول است در عمل می توان ماسه ی شسته ی  شکسته، ماسه ی کنکاسوری (4-0 ) و شن را استفاده کرد نقش ماسه ی (4-0) تامین کمبود فیلر ماسه درشت در شیراز می باشد برای تامین فیلر متوان از مصالح طبیعی یا شکسته ی مناسب گذشته از الک نمرهی 50 و 100 استفاده کرد که این کار به صورت درصد وزنی انجام می شود در هر صورت انجام آزمایش S.E.  بر روی هر نوع فیلر الزامی است آیین نامه بتن ایران میزان خاک در مصالح طبیعی رود خانه ای گذشته از الک نمره ی 200را تا 3 درصد ماسه مصرفی اجازه می دهد وبرای مصالح   شکستهی کوهی به صورت پودر سنگ خالص حداکثر تا 5 درصد را مجاز می داند اگر ریز دانه ای ماسه از نوع پودر سنگ باشد می توان  S.E.  مساوی 75 و بالاتر را نیز پذیرفت کاربرد مصالح نرم دانه به صورت فیلر در بتن تنها زمانی مجاز است که از عدم وجود مواد زیان آور برای بتن در آن اطمینان حاصل شود.

مراحل ساخت فونداسیون سازه های اسکلت فلزی

مراحل ساخت فونداسیون سازه های اسکلت فلزی


قبل از پیاده کردن نقشه روی زمین اگر زمین ناهموار بود یا دارای گیاهان و درختان باشد، باید نقاط مرتفع ناترازی که مورد نظر است برداشته شود و محوطه از کلیه گیاهان و ریشه ها پاک گردد. سپس شمال جغرافیایی نقشه را با جهت شمال جغرافیایی محلی که قرار است پروژه در آن اجرا شود منطبق می کنیم ( به این کار توجیه نقشه می گویند) پس از این کار، یکی از محورها را (محور طولی یا عرضی ) که موقیعت آن روی نقشه مشخص شده است، بر روی زمین، حداقل با دو میخ در ابتدا و انتها، پیاده می کنیم که به اینامتداد محور مبنا گفته می شود؛ حال سایر محورهای طولی و عرضی را از روی محور مبنامشخص می کنیم (بوسیله میخ چوبی یا فلزی روی زمین) که با دوربین تیودولیت و برایکارهای کوچک با ریسمان کار و متر و گونیا و شاقول اجرا می شود.

حال اگر بخواهیم محل
فونداسیون را خاکبرداری کنیم به ارتفاع خاکبرداری احتیاج داریم که حتی اگر زمین دارای پستی و بلندی جزیی باشد، نقطه ای که بصورت مبنا (B. M) باید در محوطه کارگاه مشخص شود ( این نقطه بوسیله بتن و میلگرد در نقطه ای که دور از آسیب باشد ساخته می شود. )
نکات فنی و اجرایی مربوط به خاکبرداری: داشتن اطلاعات اولیه از زمین و نوع خاک از قبیل : مقاومت فشاری نوع خاک بویژه از نظر ریزشی بودن، وضعیت آب زیرزمینی، عمق یخبندان و سایر ویژگیهای فیزیکی خاک که با آزمایش از خاک آن محل مشخص می شود، بسیار ضروری است. در خاکبرداری پی هنگام اجرا زیرزمین ممکن است جداره ریزش کند یا اینکه زیر پی مجاور خالی شود که با وسایل مختلفی باید شمع بندی و حفاظت جداره صورت گیرد؛ به طوری که مقاومت کافی در برابر بارهای وارده داشته باشد یکی از راه حلهای جلوگیری از ریزش خاک و پی ساختمان مجاور، اجرای جز به جز است که ابتدا محل فونداسیون ستونها اجرا شود و در مرحله بعدی، پس از حفاری تدریجی، اجزای دیگر دیوارسازی انجام گیرد.

نکات فنی و اجرایی مربوط به خاکریزی و زیرسازی فونداسیون : چاههای متروکه با شفته مناسب پر می شوند و در صورت برخورد محل با قنات متروکه، باید از پی مرکب یا پی تخت استفاده کرد یا روی قنات را با دال بتن محافظ پوشاند. از خاکهای نباتی برای خاکریزی نباید استفاده کرد. ضخامت قشرهای خاکریز برای انجام تراکم 15 تا 20 سانتیمتر است. برای انجام تراکم باید مقداری آب به خاک اضافه کنیم و با غلتکهای مناسب آن را متراکم نماییم، البته خاکریزی و تراکم فقط برای محوطه سازی و کف سازی است و خاکریزی زیر فونداسیون مجاز نمی باشد. در برخی موارد، برای حفظ زیر بتن مگر، ناچار به زیرسازی فونداسیون هستیم، اما ممکن است ضخامت زیرسازی کم باشد (حدود 30 سانتیمتر) در این صورت می توان با افزایش ضخامت بتن مگر، زیرسازی را انجام داد و در صورت زیاد بودن ارتفاع زیرسازی، می توان با حفظ اصول فنی لاشه چینی سنگ با ملات ماسه سیمان انجام داد.

بتن مگر چیست؟
بتن با عیار کم سیمان زیر فونداسیون که بتن نظافت نیز نامیده می شود، معمولاً به ضخامت 10 تا 15 سانتیمتر و از هر طرف 10 تا 15 سانتیمتر بزرگتر از خود فونداسیون ریخته میشود.

قالب بندی فونداسیون چگونه است؟
قالب بندی باید از تخته سالم بدون گره به ضخامت حداقل 5/2 سانتیمتر یا ورقه های فلزی صاف یا از قالب آجری (تیغه 11 سانتیمتری آجری یا 22 با اندود ماسه سیمان برای جلوگیری از خروج شیره بتن) صورت گیرد. لازم به یادآوری است که پی های عادی را می توان با قرار دادن ورقه پلاستیکی (نایلون) در جداره خاکبرداری از آن به عنوان قالب استفاده کرد.

تذکر: در آرماتور بندی فاصله میله گردها تا سطح آزاد بتن در مورد فونداسیون نباید از 4 سانتیمتر کمتر باشد.
اتصال مفصلی تیر به ستون در سازه های فولادی

برای ایجاد اتصال مفصلی تیر به ستون در سازه های فولادی می توان از نبشی به عنوان قطعه اتصال دهنده بهره برد. نبشی قطعه ای می باشد که به خودی خود دارای مقاومت خمشی خیلی ناچیزی است ، مگر آنکه توسط قطعات دیگری مانند لچکی مقاومت خمشی آنرا افزایش دهیم.
جهت اجرای این نوع اتصال ابتدا نبشی زیر سری ( نشیمن ) در روی زمین بر روی ستون در کد ارتفاعی مورد نظر جوش داده می شود. در جوشکاری این قطعه بایستی به این نکته دقت داشت که تمام سطوح تماس نبشی به ستون جوش داده نشود. نحوه جوشکاری این نبشی به این صورت می باشد که سطوح قائم آن به صورت کامل جوشکاری می شود و سطح مماسی افقی در طرفین نبشی به اندازه 20% ارتفاع جوش قائم ، جوشکاری می شود.

این عمل بدان سبب انجام می پذیرد تا نبشی جوش داده شده دارای مقاومت پیچشی نباشد. البته متاسفانه در اکثر سازه های فولادی دیده می شود که تمامس سطوح تماس نبشی جوش داده می شود که باعث ایجاد جریان پیچش در ستون می شود بدون آنکه نبشی دارای مقاومت پیچشی داشته باشد.
بعد از استوار کردن ستونها و قرار گیری تیرها ، نبشی زیر سری به صورت کامل به بال زیرین جوش داده می شود. البته برای خودداری از جوشکاری سر بالا می توان طول نبشی را از عرض بال بیشتر در نظر گرفت تا جوشکار به راحتی عمل جوشکاری را اجرا کند. سپس محل نبشی بالاسری ( زبرین ) از یک طرف به ستون و از طرف دیگر به بال فوقانی تیر جوش داده می شود. جوشکاری این نبشی نیز بدین صورت می باشد که فقط بایستی سطح مماس افقی نبشی بر روی ستون و پیشانی نبشی بر روی بال فوقانی جوش داده شوند.

شایان ذکر می باشد که از به کار بردن هر گونه نبشی اتصال جان تبر به ستون بایستی خودداری کرد.
در ضمن در این نوع اتصال ، فقط نبشی زیر سری جزء قطعات محاسباتی می باشد و بایستی مشخصات نبشی به همراه طول جوش مورد نیاز با توجه به نیروی محوری وارده به تیر محاسبه شود. اما نبشی بالاسری قطعه محاسباتی نبوده و صرفا نقش تکیه گاهی دارد.

بتن و فولاد

بتن و فولاد دو نوع مصالحی هستند که امروزه بیشتر از سایر مصالح در ساختمان انواع بناها از قبیل ساختمان پلها،ساختمان سدها، ساختمان متروها،ساختمان فرودگاه ها و ساختمان بناهای مسکونی و اداری و غیره به کار برده می شوند.و شاید به جرأت می توان گفت که بدون این دو پیشرفت جوامع بشری به شکل کنونی میسر نبود.با توجه به اهدافی که از ساخت یک بنا دنبال می شود،بتن و فولاد به تنهایی و یا به صورت مکمل کار برد پیدا می کنند. فولاد به لحاظ اینکه در شرایط به دقت کنترل شده ای تولید می شود و مشخصات و خواص آن از قبیل تعیین و با آزمایشات متعددی کنترل می شود،دارای کاربری آسانتر از بتن است. اما بتن در یک شرایط کاملا متفاوتی با توجه به پارامتر های مختلف از قبیل نوع سیمان،نوع مصالح و شرایط آب و هوایی تولید و استفاده می شود و عدم اطلاع کافی از خواص مواد تشکیل دهنده بتن و نحوه تولید و کاربرد آن می تواند ضایعات جبران ناپذیری را به دنبال داشته باشد.

با توجه به پیشرفت علم و تکنولوژی در قرن اخیر، علم شناخت انواع بتن و خواص آنها نیز توسعه قابل ملاحظه ای داشته است، به نحوی که امروزه انواع مختلف بتن با مصالح مختلف تولید و استفاده می شود و هر یک خواص و کاربری مخصوص به خود را داراست.هم اکنون انواع مختلفی از سیمانها که حاوی پوزولانها ،خاکستر بادی،سرباره کوره های آهن گدازی،سولفورها،پلیمرها،الیافهای مختلف،و افزودنیهای متفاوتی هستند،تولید می شد. ضمن اینکه تولید انواع بتن نیز با استفاده از حرارت،بخار،اتوکلاو،تخلیه هوا،فشار هیدرولیکی،ویبره و قالب انجام می گیرد.

بتن به طور کلی محصولی است که از اختلاط آب با سیمان آبی و سنگدانه های مختلف در اثر واکنش آب با سیمان در شرایط محیطی خاصی به دست می آیدو دارای ویژگیهای خاص است.

اولین سؤالی که پیش می آید این است که چه رابطه ای بین تشکیل دهنده بتن باید وجود داشته باشد تا یک بتن خوب به دست آید و اصولا بتن خوب دارای چه شرایط و ویژگیهایی است. رابطه بین اجزاء تشکیل دهنده بتن،در خواص فیزیکی و شیمیایی و همچنین نسبت اختلاط آنها با هم است.چه اگر مصالح یا آب و سیمانی با خواصی مناسب بتن با هم مخلوط گردند و در شرایط و محیطی مناسب به عمل آیند،یقینا بتن خوبی حاصل می شودو اصولا بتن خوب، بتنی است که دارای مقاومت فشاری دلخواه و رضایت بخشی باشد. رسیدن به یک مقاومت فشاری دلخواه و رضایت بخش بدین معناست که سایر خواص بتن مانند مقاومت کششی، وزن مخصوص، مقاومت دربرابر سایش، نفوذ ناپذیری، دوام، مقاومت دربرابر سولفاتها و ... نیز همسو با مقاومت فشاری، بهبود یافته و متناسب می شوند.

اگر چه شناخت مصالح مورد مصرف در ساخت بتن و همچنین خواص مختلف بتن کار آسانی نیست اما سعی می شود به خواص عمومی مصالح و همچنین بتن پرداخته شود.

بتن اینک با گذشت بیش از 170 سال از پیدایش سیمان پرتلند به صورت کنونی توسط یک بنّای لیدزی، دستخوش تحولات و پیشرفتهای شگرفی شده است.در دسترس بودن مصالح آن، دوام نسبتاً زیاد و نیاز به ساخت و سازهای فراوان سازه های بتنی چون ساختمان ها، پل ها، تونل ها، سدها، اسکله ها، راه ها و سایر سازه های خاص دیگر، این ماده را بسیار پر مصرف نموده است.

اینک حدود سه تا چهار دهه است که کاربرد این ماده ارزشمند در شرایط ویژه و خاص مورد توجه کاربران آن گشته است. اکنون کاملاً مشخص شده است که توجه به مقاومت تنها به عنوان یک معیار برای طرح بتن برای محیطهای مختلف و کاربریهای متفاوت نمی تواند جوابگوی مشکلاتی باشد که در درازمدت در سازه های بتنی ایجاد می گردد. چند سالی است که مسأله پایایی و دوام بتن در محیط های مختلف و به ویژه خورنده برای بتن و بتن مسلح مورد توجه خاص قرار گرفته است.مشاهده خرابی هایی با عوامل فیزیکی و شیمیایی در بتن ها در اکثر نقاط جهان و با شدتی بیشتر در کشور های در حال توسعه، افکار را به سمت طرح بتن هایی با ویژگی خاص و با دوام لازم سوق داده است. در این راستا در پاره ای از کشورها مشخصات و دستورالعمل ها واستانداردهایی نیز برای طرح بتن با عملکرد بالا تهیه شده و طراحان و مجریان در بعضی از این کشورهای پیشرفته ملزم به رعایت این دستورالعمل ها گشته اند.

در مواد تشکیل دهنده بتن نیز تحولات شگرفی حاصل شده است. استفاده از افزودنی های مختلف به عنوان ماده چهارم بتن، گسترش وسیعی یافته و در پاره ای از کشورها دیگر بتنی بدون استفاده از یک افزودنی در آن ساخته نمی شود. استفاده از سیمان های مختلف با خواص جدید و سیمان های مخلوط با مواد پوزولانی و نیز زائده های کارخانه های صنعتی روز به روز بیشتر شده و امید است که بتواند تحولی عظیم در صنعت بتن چه از نقطه نظر اقتصادی و چه از نظر دوام و نیز حفظ محیط زیست در قرن آینده بوجود آورد.

در سازه های بتنی مسلح نیز جهت پرهیز از خوردگی آرماتور فولادی از مواد دیگری چون فولاد ضد زنگ و نیز مواد پلاستیکی و پلیمری (FRP) استفاده می شود که گسترش آن منوط به عملکرد آن در دراز مدت گشته است. با توجه به نیاز روز افزون به بتن های خاص که بتوانند عملکرد قابل و مناسبی در شرایط ویژه داشته باشند،سعی شده است تا در این مقاله به پاره ای از این بتن ها اشاره گردد. کاربرد مواد افزودنی به ویژه فوق روان کننده ها و نیز مواد پوزولانی به ویژه دوده سیلیس در تولید بتن با مقاومت زیاد و با عملکرد خوب مختصراً آورده می شود. بتن های خیلی روان که تحولی در اجرا پدید آورده است و نیز بتن های با نرمی بالا برای تحمل ضربه و نیروهای ناشی از زلزله نیز از مواردی است که باید به آنها اشاره نمود. کوشش های فراوان برای مبارزه با مسأله خوردگی آرماتور در بتن و راه حل ها و ارائه مواد جدید نیز در اواخر سالهای قرن بیستم پیشرفت شتابنده ای داشته است که به آنها اشاره خواهد شد.
افزودنی های خاص در شرایط ویژه :

برای ساخت بتن های ویژه در شرایط خاص نیاز به استفاده از افزودنی های مختلفی می باشد. پس از پیدایش مواد افزودنی حباب هواساز در سالهای 1940 کاربرد این ماده در هوای سرد و در مناطقی که دمای هوا متناوباً به زیر صفر رفته و آب بتن یخ می زند، رونق بسیار یافت. این ماده امروز یکی از پر مصرف ترین افزودنی ها در مناطق سرد نظیر شمال آمریکا و کانادا و بعضی کشورهای اروپایی است.

ساخت افزودنی های فوق روان کننده که ابتدا نوع نفتالین فرمالدئید آن در سالهای 1960 در ژاپن و سپس نوع ملامین آن بعداً در آلمان به بازار آمد شاید نقطه عطفی بود که در صنعت افزودنی ها در بتن پیش آمد. ابتدا این مواد برای کاستن آب و به دست آوردن کارایی ثابت به کار گرفته شد و چند سال بعد با پیدایش بتن های با مقاومت زیاد نقش این افزودنی اهمیت بیشتری یافت. امروزه بتن های مختلفی برای منظور ها و خواص ویژه و نیز به منظور مصرف در شرایط خاص با این مواد ساخته می شود که ازمیان آنها به ساخت بتن های با مقاومت زیاد، بتن های با دوام زیاد، بتن های با مواد پوزولانی زیاد (سرباره کوره های آهن گدازی و خاکستر بادی)، بتن های با کارایی بالا، بتن های با الیاف و بتن های زیر آب و ضد شسته شدن می توان اشاره نمود.

بتن های با کارآیی بسیار زیاد که چند سالی است از پیدایش آن در جهان و برای اولین بار در ژاپن نمی گذرد، تحول جدیدی در صنعت ساخت و ساز بتنی ایجاد کرده است. این بتن که نیاز به لرزاندن نداشته و خود به خود متراکم می گردد، مشکل لرزاندن در قالب های با آرماتور انبوه و محلهای مشکل برای ایجاد تراکم را حل نموده است. این بتن علیرغم کارایی بسیار زیاد خطر جدایی سنگدانه ها و خمیر بتن را نداشته و ضمن ثابت بودن کارایی و اسلامپ تامدتی طولانی می تواند بتنی با مقاومت زیاد و دوام و پایاپی مناسب ایجاد کند. در طرح اختلاط این بتن باید نسبت های خاصی را رعایت نمود. به عنوان مثال شن حدود 50 درصد حجم مواد جامد بتن را تشکیل داده و ماسه حدود 40 درصد حجم ملات انتخاب می شود. نسبت آب به مواد ریزدانه و پودری بر اساس خواص مواد ریز بین 9/0 تا 1 می باشد. با روش آزمون و خطا نسبت دقیق آب به سیمان و مقدار ماده فوق روان کننده مخصوص برای مصالح مختلف تعیین می گردد. از این بتن با استفاده از افزودنی دیگری که گرانروی بتن را می افزاید در زیر آب استفاده شده است.

 

مسائل اجرائی بتن سبکدانه سازه ای

مسائل اجرائی بتن سبکدانه سازه ای
بسیاری از اصول اجرائی حاکم بر بتن ریزیهای معمولی در بتن ریزی با بتن سبــکدانه سازه ای کماکان از اهمیت برخوردار است .
بسیاری از اصول اجرائی حاکم بر بتن ریزیهای معمولی در بتن ریزی با بتن سبــکدانه سازه ای کماکان از اهمیت برخوردار است . مسلما" در بتن های غیر سازه و سبکدانه بسیاری از نکات مورد نظر نمیتواند با اهمیت تلقی شود و عدم رعایت برخی قواعد تا آنجا که به وزن مخصوص بتن ریخته شده لطمه نزند و آنرا بالا نبرد با اهمیت تلقـــی نمیشـــود.

اصل پیوستگی و تدوام در بتن ریزی ( عدم ایجاد درز سرد ) ، اصل عدم گیرش یا نزدیکی به گیرش در بتن قبل از ریختن و تراکم ، اصل عدم جدا شدگی مواد (نا همگنی ) بتن ، اصل رعایت دمای مناسب بتن ریزی ، اصل عدم آلودگی بتن به مواد مضر ، اصل رعایت تراکم صحیح ، اصل رعایت پرداخت صحیح سطح بتن ، اصل انتخاب صحیح اسلامپ با توجه به وضعیت قطعه و وسایل تراکمی موجود ، اصل رعایت و بکارگیری نسبت ها و مقادیر صحیح مصالح و پرهیز از مصرف مواد نا مناسب ، و در نهایت اصل عمل آوری صحیح و قالب برداری به موقع و با دقت همواره در این نوع بتن ریزیها مانند بتن های معمولی از اهمیت برخوردار می باشد .

استفاده از مواد مناسب و نسبت های صحیح :
بکار گیری مواد و مصالح مناسب طبق مشخصات پروژه ، رعایت مصرف سیمان تازه و غیر فاسد از نوع مورد نظر و مطابق با استاندارد مورد قبول کاملا" مهم می باشد . توزین یا پیمانه کردن دقیق و صحیح مصالح مصرفی طبق طرح اختلاط ارائه شده از اهمیت برخوردار است .

بهتر است مصالح سنگی مصرفی به ویژه سبکدانه در شرایطی قرار گیرد که نوسانات رطوبتی اندکی داشته باشد . برای مثال خوبست بدانیم لیکاهای موجود در ایران میتواند تا بیش از 30 درصد آب را در خود جذب و نگهداری کند . بنا براین بین سنگدانه کاملا" خشک و کاملا" اشباع تفاوت فاحشی وجود دارد و میتواند بر اسلامپ حاصله و نسبت آب به سیمان و در نتیجه به مقاومت و دوام بتن سبکدانه سازه ای اثر چشمگیری باقی گذارد . بهر حال اگر بدانیم مثلا" سنگدانه های ما حدود 5 درصد رطوبت دارد میتوانیم مقدار آب مصرفی را تنظیم نمائیم تا به طرح اختلاط مورد نظر دست یابیم .
باید دانست مشکل بزرگ تولید بتن سبکدانه همین تغییر رطوبت است و لذا کنترل نسبت آب به سیمان در این بتن ها مشکل می باشد و حتی مانند بتن های معمولی نیز نمیتوان با کنترل اسلامپ به نتیجه مورد نظر رسید .

انتخاب اسلامپ صحیح :
مانند بتن های معمول انتخاب اسلامپ میتواند مهم باشد . از نظر جدا شدگی ، آب انداختن ، رسیدن به تراکم مورد نظر با توجه به ابعاد قطعه ، طرز قرارگیری ، وضعیت درهمی میلگردها ، وسایل تراکمی موجود قابل تأمین این انتخاب کاملا" معنا دار و با اهمیت است . به دلیل سبکی سنگدانه ها بویژه سبکدانه های درشت احتمال جدا شدگی در بتن شل افزایش می یابد . لذا اسلامپ های بیش از ده سانتی متر ابدا" مطلوب نیست مگر اینکه بتن پر عیاری داشته باشیم ، همچنین با وجود موادی مانند میکرو سیلیس ممکنست این جدا شدگی به حداقل برسد .

بنا براین اگر قرار باشد بتن سبکدانه پمپی با اسلامپ 10 تا 15 سانتی متر را داشته باشیم عیار سیمان باید از حدود 400 کیلو در متر مکعب فراتر رود . در حالیکه اگر اسلامپ کمتر باشد حداقل عیار سیمان در ACI برابرkg/m3 335 مطرح شده است . در حالات عادی اسلامپ های 5 تا 8 سانتی متر برای بتن سبکدانه غیر پمپی و اسلامپ 7 تا 10 سانتی متر برای بتن سبکدانه پمپی مطلوب تلقی میشود بدون اینکه این اعداد جنبه آئین نامه ای داشته باشد .

تغییرات اسلامپ در طول اجراء در بتن سبکدانه بسیار جدی است . در بتن های معمولی نیز این پدیده به چشم میخورد بویژه وقتی سنگدانه های درشت خیلی خشک باشند ممکن است حتی در طول 15 دقیقه پس از ساخت شاهد افت جدی در اسلامپ باشیم . در بتن سبکدانه این امر به شدت وجود دارد .

فرض کنید اگر در طول 15 تا 30 دقیقه جذب آب سبکدانه 5 تا 10 درصد فرض شود و فقط سبکدانه درشت به میزان 300 کیلو داشته باشیم 15 تا 30 کیلو آب را جذب می کند که کاهش اسلامپ 6 تا 15 سانتی متر را میتوان شاهد بود . اگر قرار باشد طول مدت حمل و ریختن و تراکم زیاد باشد کاملا" دچار مشکل میشویم . همچنین در بتن های پمپی ، این کاهش و افت در اسلامپ مسئله ساز است .

 بنا براین سعی میشود که چنین پروژه هائی حتی الامکان از 24 ساعت قبل از ساخت بتن ، سبکدانه ها را خیس کرد (Presoaking ) تا آب قابل ملاحظه ای را جذب نماید و پس از اختلاط بتن شاهد افت اسلامپ زیادی نباشیم . این خیس کردن ممکن است حتی از سه روز قبل شروع شود ادامه یابد . خیس کردن سنگدانه ممکنست با آب پاشی تحت فشار و بصورت بارانی باشد و یا از سیستم خلاء برای نفوذ سریعتر آب به داخل سبکدانه استفاده شود که در ایران روش ساده اول معمولتر و عملی تر می باشد . ریختن آب و سبکدانه در مخلوط کن و اضافه کردن سیمان و غیره پس از مدتی تأخیر میتواند به افت اسلامپ کمتر منجر شود .

میزان جذب آب سبکدانه ها علاوه بر زمان تابع میزان آب موجود در آن ( رطوبت اولیه ) نیز می باشد که پیش بینی جذب آب را در مدت معین دشوار می کند مگراینکه قبلا" آزمایشهائی را با رطوبت اولیه موجود انجام داده باشیم .
اسلامپ های کمتر از 5 سانتی متری نیز کار تراکم را با مشکل مواجه می سازد و فضای خالی زیادی را در بتن بهمراه دارد . بسیاری از تحقیقات نشان داده اند مقاومت و دوام بتن های سبکدانه که با سبکدانه خشک ساخته شده اند بهتر از وقتی است که از سبکدانه قبلا" خیس شده یا اشباع شده استفاده گشته است .

اصل رعایت دمای مناسب :
حداقل و حداکثر دمای مجاز و مطلوب در أئین نامه ها مشخص شده است . رعایت این امر برای بتن سبک سازه ای و با دوام بشدت ضروری است و از این نظر تفاوتی با بتن معمولی وجود ندارد . حداقل دمای مجاز 5+ درجه سانتی گراد و حداقل دمای مطلوب 10+ درجه سانتی گراد است . حداکثر دمای مجاز معمولا" 32-30 درجه سانتی گراد تا هنگام گیرش می باشد و بهتر است از این حد فاصله معقولی را داشته باشیم . در هوای سرد و گرم که بتن با دمای مناسب تولید می شود نباید در حین اجرا آنقدر تأخیر و معطلی بوجود آورد که با تبادل گرمائی ، دمای مطلوب از دست برود .


اصل همگنی (عدم جداشدگی) :
اصول جداشدگی و عوامل مؤثر بر آن برای بتن سبکدانه همچون بتن معمولی است ، اما برای بتن سبکدانه یک عامل دیگر یعنی اختلاف در چگالی ذرات و خمیر سیمان یا ملات میتواند به جداشدگی منجر گردد . عوامل جداشدگی میتوانند داخلی باشند که صرفا" استعداد جداشدگی را بوجود می آورند و یا عامل خارجی باشند که مربوط به اجرا هستند و استعداد را شکوفا می کنند . از عوامل داخلی بالا رفتن حداکثر اندازه سبکدانه می باشد که معمولا" باعث جداشدگی میگردد و بهتر است حداکثر اندازه سبکدانه برای بتن سازه ای به 20 میلی متر محدود شود و توصیه می گردد تا از حداکثر اندازه 15 – 12ر میلی متر استفاده شود .

جالب است بدانیم معمولا" با افزایش حداکثر اندازه ، چگالی حجمی خشک ذرات سبکدانه درشت کاهش می یابد و از این نظر نیز امکان جداشدگی را قوت می بخشد .

بالا رفتن اسلامپ به افزایش استعداد جداشدگی منجر می شود . کاهش میزان عیار سیمان و مواد سیمانی و چسباننده میتواند بشدت باعث افزایش استعداد جداشدگی گردد . اختلاف وزن مخصوص ( چگالی ) ذرات سبکدانه با خمیر سیمان و یا اختلاف چگالی ذرات ریزدانه و درشت دانه به بالا رفتن استعداد جداشدگی منجر می گردد . بالا رفتن نسبت آب به سیمان به افزایش پتانسیل جداشدگی می انجامد . درشت تر شدن بافت دانه بندی سنگدانه ها معمولا" امکان جداشدگی را افزایش می دهد . وجود مواد ریز دانه و چسباننده مانند پوزولان و میکروسیلیس و سرباره ها می تواند باعث کاهش استعداد جداشدگی بتن سبکدانه گردد ، همچنین بکارگیری مواد حبابزا و ایجاد حباب هوا میتواند جداشدگی و آب انداختن را کاهش دهد ضمن اینکه روانی و کارآئی مورد نظر تأمین میگردد .
از عوامل خارجی می توان حمل نامناسب ، ریختن غلط ، استفاده از شوت های طولانی و یا شیب نامطلوب ، برخورد بتن با قالب و میلگردها ، ریختن بتن از ارتفاع زیاد بدون لوله و قیف هادی و یا بدون پمپ معمولا" به جداشدگی منجر میشود . بخاطر حساسیت جداشدگی در این بتن ها باید دقت بیشتری را اعمال نمود . باید دانست نتیجه جداشدگی در بتن سبکدانه نیز از نظر مقاومتی و دوام بمراتب حادتر و مضرتر از بتن معمولی است .

اصل عدم آلودگی بتن به مواد مضر :
در طول حمل و ریختن و تراکم نباید مواد مضر اعم از مواد ریزدانه رسی ( گل و لای ) ، مواد شیمیایی شامل چربی ها و مواد قندی یا انواع مختلف نمکها و آب شور و غیره با بتن مخلوط شود . مخلوط شدن موادی همچون گچ نیز توجیه ندارد . بهرحال در این رابطه هیچ تفاوتی بین بتن معمولی و سبکدانه سازه ای وجود ندارد .

اصل عدم کارکردن با بتن در مرحله گیرش :
اگر عملیات بتن ریزی با بتنی که در مرحله گیرش است انجام گیرد مقاومت و دوام آن بشدت کاهش می یابد و نفوذپذیری آن زیاد میشود . از این نظر بتن مانند ملات گچ زنده است که اگر آن را مرتبا" بهم بزنیم و ورز دهیم تبدیل به ملات گچ کشته میشود که بشدت کم مقاومت و کم دوام است ، هرچند گیرش آن به تأخیر می افتد و یا اصلا" خود را نمی گیرد و صرفا" خشک می شود . بهرحال نباید بتن را در هنگامی که در شرف گیرش است مخلوط نمود و یا ریخت و متراکم کرد . از این نظر بین بتن سبکدانه و بتن معمولی اختلافی احساس نمی گردد .
مسلما" در هوای گرم و یا بتن با دمای زیاد ، گیرش زودتر حاصل میشود . زمان گیرش تابع نوع سیمان ( جنس و ریزی ) ، نسبت آب به سیمان و وجود مواد افزودنی می باشد . برای افزایش زمان گیرش و ایجاد مهلت برای عملیات اجرائی می توان از بتن خنک ، کار در هنگام خنکی هوا یا شب ، سیمانهای کندگیر کننده استفاده نمود .


اصل پیوستگی و تداوم بتن ریزی ( عدم ایجاد درز سرد در بین لایه ها ) :
اگر در هنگام بتن ریزی به هر علت ، لایه زیرین قبل از ریختن و تراکم لایه روئی گیرش خود را انجام داده باشد درز سرد Cold Joint بوجود می آید . در این رابطه فرقی بین بتن سبکدانه و معمولی وجود ندارد . باید با تجهیز مناسب کارگاه ، افزایش توان تولید و حمل در ریختن و تراکم بتن ، افزایش زمان گیرش بتن و یا ایجاد درزهای اجرائی مناسب و کاهش سطح بتن ریزی و یا کاهش ضخامت لایه ها امکان ایجاد درز سرد را به حداقل رساند .

تراکم صحیح بتن سبکدانه :
از آنجا که بتن های سبکدانه بشدت در معرض جدا شدگی هستند ، تراکم با قدرت زیاد و یا مدت بیش از حد مشکلات جدی را بوجود می آورد . به محض اینکه احساس می نمائیم که شیره یا سنگدانه ها شروع به روزدن می نمایند باید تراکم را قطع کرد . لرزش ، بیش از فشار و ضربه میتواند موجب جدا شدگی گردد.
به هر حال باید کاملا" هوای بتن خارج و فضای خالی به حداقل برسد تا مقاومت و دوام کافی ایجاد گردد.

پرداخت سطح بتن سبکدانه :
آب انداختن بتن همواره مشکل بزرگی در پرداخت نهائی سطح بتن می باشد و این امر اختصاص به بتن سبکدانه ندارد . خوشبختانه به دلیل جذب آب تدریجـــی توسط سبکدانه ها ، آب انداختن میتواند به کمترین مقدار برسد اما اگر سبکدانه ها قبل از اختلاط کاملا" اشباع شده باشد امکان آب انداختن بیشتر می گردد . کم بودن عیار سیمان و مواد چسباننده سیمانی ، فقدان مواد ریزدانه ، عدم وجود حباب هوا در بتن ، درشتی بافت دانه بندی ، افزایش حداکثر اندازه سبکدانه ، گردگوشه گی سنگدانه ها و بافت صاف سطح سنگدانه ، بالا بودن اسلامپ ، زیادی نسبت آب به سیمان و ... میتواند موجب افزایش آب انداختن شود .
وقتی بتن آب می اندازد باید اجازه داد آب تبخیر گردد و اگر تبخیر به سرعت میسر نمی گردد یا نگران گیرش هستیم باید سعی کنیم آب روزده را با وسیله مناسبی ( گونی یا اسفنج ) از سطح پاک نمائیم و سپس سطح را با ماله چوبی و بدنبال آن با ماله فلزی یا لاستیکی صاف کنیم .
عدم رعایت این نکات موجب افزایش نسبت آب به سیمان در سطح و کاهش مقاومت و دوام و افزایش نفوذپذیری بتن سطحی می گردد .

عمل آوری بتن و سبکدانه :
هر چند عمل آوری رطوبتی و حرارتی بتن سبکدانه با بتن معمولی تفاوت چندانی ندارد اما اعتقاد بر این است که سبکدانه ها بعلت پوکی و تخلخل و جذب آب میتوانند در صورت فقدان عمل آوری رطوبتی از ناحیه اجرا کنندگان ، بخشی از آب خود را در اختیار خمیر سیمان قرار دهند و توقف شدیدی در هیدراسیون سیمان رخ ندهد . این امر را عمل آوری داخلی بتن سبکدانه می گویند .

کنترل کیفی بتن سبکدانه :
کنترل کیفی بتن سبکدانه شامل بتن تازه و سخت شده است . کنترل روانی ، وزن مخصوص و هوای بتن از مهمترین کنترلهای بتن تازه است . استفاده از آزمایش اسلامپ ، میز آلمانی ( روانی ) و درجه تراکم برای این بتن ها پیش بینی شده است . وزن مخصوص بتن تازه سبکدانه متراکم معمولا" کنترل می شود و در آئین نامه های مختلف اختلاف 2 تا 3 درصد مجاز شمرده میشود ( نسبت به طرح اختلاط ) . هوای بتن را برای بتن سبکدانه نمیتوان بکمک روش فشاری بدست آورد و حتما" باید از روش حجمی بهره گرفت . برای بتن سبکدانه سخت شده ، وزن مخصوص ، مقاومت فشاری ، کششی خمشی و نفوذپذیری ، جذب آب ، جذب موئینه و آزمایشهای دوام در برابر خوردگی قابل کنترل است .

وزن مخصوص بتن سخت شده سبکدانه بصورت اشباع و خشک اندازه گیری میشود و گاه بجای خشک کردن از جمع زدن مقادیر اجزاء در هر متر مکعب و افزودن مقداری رطوبت ثابت به آن ، وزن مخصوص بتن سخت شده را بدست می آورند .

برای تعیین مقاومت فشاری و سایر پارامتر ها تفاوت چندانی بین بتن سبکدانه و معمولی وجود ندارد و شباهت جدی و کامل بین آنها وجود دارد . بهرحال ممکنست در مواردی نتایج حاصله در مقایسه با بتن های معمولی گمراه کننده باشد . مثلا" اگر جذب آب بتن سبکدانه را بصورت درصد وزنی گزارش کنیم و آنرا با جذب آب بتن معمولی مقایسه نمائیم دچار اشتباه میشویم و لذا توصیه میشود جذب آب بتن بصورت درصد حجمی گزارش گردد .

بتن فاقد ریزدانه ( Concrete finez – No ) :
اگر سنگدانه های درشت تک اندازه را با سیمان و آب مخلوط کنیم و در قالب بدون تراکم بریزیم بتن فاقد ریزدانه و متخلخل بدست می آید که از وزن مخصوص کمتری نسبت به بتن معمولی برخوردار خواهد بود . اگر چگالی سنگدانه ها در حدود معمولی باشد وزن مخصوص بتن فاقد ریزدانه حدود 1600 تا kg/m3 2000 بدست می آید اما اگر از سبکدانه درشت استفاده نمائیم ممکنست وزن مخصوص بتن حاصله از kg/m3 1000 کمتر شود ( حتی تا حدود kg/m3 650 ) . بهرحال در هر مورد بتن مورد نظر سبک یا نیمه سبک تلقی می شود اما اگر سنگدانه معمولی استفاده شود نمیتوان آنرا بتن سبکدانه دانست .

مسلما" اگر سنگدانه تک اندازه بکار نرود و حاوی ذرات ریز تا درشت باشد وزن مخصوص بتن حاصل نیز زیاد خواهد شد . سنگدانه درشت مصرفی باید 20-10 میلی متر باشد و 5 درصد ذرات درشتر و 10 درصد ذرات ریزتر در این نوع سنگدانه تک اندازه (Singl Size) مجاز است اما بهرحال نباید ذرات ریزتر از 5 میلی متر در آن مشاهده گردد . سنگدانه درشت بهتر است پولکی و کشیده و یا بسیار تیزگوشه نباشد . سنگدانه های گرد گوشه یا نیمه شکسته برای تولید این بتن ارجح است .

ساختار بتن فاقد ریزدانه دارای تخلخل ظاهری است و حفرات موجود در بتن با چشم براحتی دیده می شود که در این مجموعه خمیر سیمان باید صرفا" تا حد امکان سنگدانه ها را بهم چسباند و از پر کردن فضاها با خمیر سیمان پرهیز شود زیرا وزن مخصوص بالا خواهد رفت . وجود خمیر سیمان با ضخامت حدود 1 میلی متر بر روی سنگدانه ها کاملا" مناسب است .

اگر سنگدانه معمولی بکار رود معمولا" مقدار شن اشباع تک اندازه بین 1400 تا 1750 کیلوگرم می باشد . حجم اشغالی ذرات شن در حدود 550 تا 700 لیتر در هر متر مکعب است . وزن سیمان مصرفی بین 75 تا 150 کیلو در متر مکعب یا بیشتر است که حجم آن حدود 25 تا 50 لیتر می باشد . معمولا" نسبت آب به سیمان مصرفی 4/0 تا 5/0 می باشد که افزایش آن می تواند به شلی خمیر سیمان و روانی آن منجر شود که موجب جداشدگی و پرشدن خلل و فرج می گردد و بتن مورد نظر حاصل نمی شود . با کاهش نسبت آب به سیمان چسبندگی لازم بوجود نمی آید و از نظر اجرائی دچار مشکل می شویم .

نسبت وزنی سیمان به سنگدانه تا می باشد . همانطور که از محاسبات فوق بر می آید فضای خالی این بتن ( پوکی ) بین 25 تا 40 درصد می باشد و ابعاد این فضاها نیز بزرگ است درصد جذب آب بصورت وزنی حدود 15 تا 25 درصد است . طبیعتا" با افزایش مقدار سیمان و آب و یا مصرف شن با دانه بندی پیوسته ( Graded Size ) وزن مخصوص بتن بیشتر خواهد شد . توصیه می شود شن ها قبل از مصرف خیس و اشباع گردند .

طرح اختلاط این بتن ها بصورت آزمون و خطا خواهد بود و بشدت تابع شرایط ساخت بتن می باشد . بتن فاقد ریزدانه معمولا" بدون تراکم تولید می شود و اگر مرتعش یا متراکم شود بسیار جزئی خواهد بود زیرا خمیر سیمان میل به پر کردن فضای خالی بین سنگدانه ها را خواهد داشت و چسبندگی سنگدانه به یکدیگر به حداقل خواهد رسید .

معمولا" انجام آزمایش کارآئی یا اسلامپ برای این نوع بتن موردی نخواهد داشت . از آنجاکه سنگدانه تک اندازه مصرف می شود جداشدگی از نوع جدائی ریز و درشت سنگدانه معنائی ندارد و می توان آن را از ارتفاع قابل ملاحظه ریخت .

بعلت محدودیت دامنه نسبت آب به سیمان و وجود فضای خالی قابل توجه در این نوع بتن ، مقاومت فشاری این نوع بتن اغلب در حدود 5 تا 15 مگا پاسکال می باشد و طبیعتا" یک بتن سبک سازه ای تلقی نمی گردد و بصورت مسلح مصرف نمی شود . برخی اوقات سعی می کنند میلگردها را با یک لایه ضد خوردگی ( پوشش مناسب ) آغشته کنند و سپس در بتن فاقد ریزدانه بکار برند . اگر از سبکدانه برای ساخت این بتن استفاده شود ، مقاومت فشاری آن 2 تا 8 مگا پاسکال می باشد .

جمع شدگی بتن های فاقد ریزدانه بمراتب کمتر از بتن معمولی است زیرا مقدار سنگدانه در مقایسه با خمیر سیمان زیاد است و یقه قابل توجه بوجود می آورد . بتن فاقد ریزدانه سریعا" خشک می شود زیرا خمیر سیمان در مجاورت هوای موجود و فضای خالی است و علی القاعده در ابتدا از جمع شدگی بیشتری نسبت به بتن معمولی برخوردار می باشد و عمل آوری آن از اهمیت برخوردار است . قابلیت انتقال حرارتی آن بمراتب از بتن معمولی با سنگدانه مشابه کمتر است ( حدود تا ) که با افزایش رطوبت و اشباع بودن این بتن ، این قابلیت انتقال حرارت افزایش می یابد .

مدول الاستیسیته این بتن ها بین 5 تا Gpa20 است ( برای مقاومت های 2 تا 15مگا پاسکال ) . نسبت مقاومت خمشی به فشاری حدود 30 درصد است که از نسبت مقاومت خمشی به فشاری بتن های معمولی بیشتر می باشد . ضریب انبساط حرارتی این نوع بتن در حدود تا بتن معمولی است .

نفوذپذیری زیاد از مزایا و شاید معایب این نوع بتن است . اما نکته مهم آنست که موئینگی در این نوع بتن کم تا ناچیز می باشد . اگر اشباع از آب نباشد در برابر یخبندان مقاوم است . بعنوان یک نفوذپذیر زهکش و تثبیت شده و همچنین یک مسیر درناژ و مقاوم بسیار مفید است . بازی کردن لایه های قلوه سنگ و شن درشت و متوسط یا ریز بعنوان زهکش یا بلوکاژ و فیلتر از مشکلات اجرائی محسوب می شود بویژه اگر بخواهد باربر باشد یکی از معدود راههای حل مشکل ، استفاده از بتن فاقد ریزدانه است و در این حالت مسئله سبکی زیاد مهم نیست .

این نوع بتن مانند بسیاری از بتن های سبک می تواند جاذب صوت باشد ( نه عایق صوت ) و برای این منظور نباید سطح این بتن با اندودی پوشانده شود .

اندودکردن این بتن بسیار خوب و ساده انجام می شود . استفاده از این بتن برای روسازی و پیاده رو سازی اطراف درختان و یا پارکینگ ها بسیار مفید است ( بدلیل نفوذپذیری ) . در دیوارهای باربر با طبقات کم می توان از این نوع بتن استفاده نمود . برای ایجاد نفوذپذیری بعنوان لایه اساس یا زیر اساس میتواند بطور مؤثر عمل نماید . همچنین بعنوان یک لایه بتن مگر نفوذپذیر مناسب است در زیر دال کف یا شالوده منابع آب بتنی نیز از این بتن می توان استفاده نمود .

طرح اختلاط بتن سبکدانه ( سازه ای و غیر سازه ای )
در طرح اختلاط هر نوع بتن ابتدا باید خواسته ها را بررسی و فهرست نمود که در مورد بتن سبک نیز این خواسته ها عبارتند از :
مقاومت فشاری در سن مورد نظر ، وزن مخصوص بتن تازه و خشک ، دوام بتن در شرایط محیطی یا سولفاتی ، اسلامپ و کارآئی بتن ، مقدار حباب هوای لازم با توجه به حداکثر اندازه وشرایط محیطی ، و احتمالا" موارد دیگری همچون مدول الاستیسیته یا خواص فیزیکی مکانیکی دیگر مثل قابلیت انتقال حرارت و غیره ، در کنار این موارد ممکنست محدوده دانه بندی مطلوب ( بویژه در روشهای اروپائی ) از جمله محدودیت ها و خواسته ها باشد .

- در کنار این خواسته ها ، داده هائی نیز بر اساس اطلاعات موجود از سیمان ، سنگدانه و ... در دست است و یا باید در آزمایشگاه بدست آید از جمله اینها می توان به موارد زیر اشاره نمود :

نوع سیمان ، حداقل و حداکثر مجاز مصرف سیمان ، حداکثر مجاز نسبت آب به سیمان ، نوع مواد افزودنی مورد نظر و مشخصات آن ، نوع سنگدانه درشت و ریزدانه ، شکل و بافت سطحی سنگدانه ها ، چگالی و جذب آب سبکدانه ها و سنگدانه های معمولی ، رژیم و روند جذب آب سبکدانه ، وزن مخصوص توده ای سنگدانه درشت متراکم با میله ( در طرح امریکائی ) ، دانه بندی سنگدانه ها و حداکثر اندازه آنها ، ویژگیهای مکانیکی و دوام سنگدانه ها ، مدول ریزی سنگدانه ها و ریزدانه ها ( بویژه در روش امریکائی ) ، چگالی ذرات سیمان و افزودنیها : گاه لازمست دانه بندی یا مدول ریزی سبکدانه ها معادل سازی شود یعنی با توجه به اختلاف در چگالی ذرات ، دانه بندی وزنی به دانه بندی و مدول ریزی حجمی تبدیل گردد که در این حالت لازمست برای چگالی ذرات هر بخش اندازه ای را تعیین کنیم .

روش طرح اختلاط و جداول و اطلاعات ضروری در هر روش :
معمولا" در هر نوع روش طرح اختلاط لازمست حدود مقدار آب آزاد با توجه به کارآئی ، حداکثر اندازه سنگدانه و شکل آن فرض گردد و بدست آید . نسبت آب به سیمان از جداول راهنما یا تجربیات گذشته و شخصی فرض می گردد . پس مقدار سیمان در این صورت مشخص می گردد . هر چند گاه در طرح اختلاط بتن سبک ابتدا عیار سیمان فرض شده و با در نظر گرفتن نسبت آب به سیمان یا کارآئی ، مقدار آب مشخص می شود .
اختلاف عمده روش ها در تعیین مقدار سنگدانه ها خواهد بود و بویژه در طرح مخلوط بتن سبکدانه یا نیمه سبکدانه ، اختلافات موجود روشها برای بتن معمولی ، بیشتر می گردد .

در روشهای اروپائی ( آلمانی و اتحادیه بتن اروپا ) با توجه به محدوده مطلوب دانه بندی حجمی، سهم سنگدانه های ریز و درشت ( خواه هر دو سبکدانه یا یکی از آنها سبکدانه باشد ) بدست می آید، سپس چگالی متوسط سنگدانه ها تعیین شده و در فرمول حجم مطلق قرار می گیرد و مقدار کل سنگدانه بدست می آید . فرمول حجم مطلق در شکل ساده آن در این حالت بصورت زیر است :


که C و و به ترتیب وزن سیمان ، آب آزاد و کل سنگدانه ها بصورت اشباع با سطح خشک است و و و به ترتیب چگالی ذرات سیمان ، آب و چگالی متوسط سنگدانه های اشباع با سطح خشک می باشد و حجم هوا در واحد حجم بتن است .

با داشتن اطلاعات مورد نیاز ، مجهول ما فقط می باشد که تعیین می شود . اگر افزودنی داشته باشیم حجم افزودنی از تقسیم وزن به چگالی آن بدست می آید و در رابطه قرار داده می شود .

پس از تعیین با توجه به سهم هر سنگدانه ، وزن آن مشخص می گردد و با توجه به ظرفیت جذب آب هر نوع سنگدانه می توان وزن خشک هر کدام و آب کل را تعیین کرد . وزن مخصوص بتن تازه نیز از جمع اوزان اجزاء بتن بدست می آید ( بصورت محاسباتی ) در عمل پس از ساخت مخلوط آزمون با توجه به نتیجه محاسبات و اطلاعات حاصله مانند اسلامپ ، کارآئی و مقاومت و وزن مخصوص بتن میتوان اصلاحات لازم را در محاسبات به انجام رسانید و طرح اختلاط را نهائی کرد. امریکائی ها نیز در ACI 211.1 و ACI 211.2 و ACI 213 R سه روش را برای طرح اختلاط بتن سشبکدانه و یا نیمه سبکدانه توصیه نموده اند :

1. روش حجم مطلق :
در این روش عملا" پس از تعیین آب آزاد ، سیمان ، سنگدانه درشت خشک و اشباع ، ازفرمول حجم مطلق استفاده نموده و وزن ماسه اشباع با سطح خشک بدست می آید . این روش برای بتن معمولی ، نیمه سبکدانه و تمام سبکدانه قابل اجراست .

مشکل عمده در این حالت تعیین مقدار چگالی اشباع با سطح خشک سبکدانه ها و ظرفیت جذب آب آنهاست . علاوه بر آن عملا" یک اشکال مفهومی نیز در این حالت وجود دارد و آن اینکه آیا اصولا" در هنگام ریختن و گیرش بتن ، سبکدانه ها به مرحله اشباع با سطح خشک رسیده اند که بتوان از چگالی اشباع با سطح خشک آنها برای تعیین حجم اشغال آنها در بتن استفاده نمود . از آنجا که تفاوت حالت واقعی با فرضی گاه خیلی زیاد است . استفاده از این روش بویژه اگر قرار باشد وزن اشباع با سطح خشک و چگال مربوط در فرمول حجم مطلق بکار رود محل تأمل است مگر اینکه از یک چگالی یا وزن دیگر با توجه به جذب آب واقعی در این حالت استفاده نمود که روش بسیار دقیقی حاصل می گردد . امروزه سعی شده است با این روش به طرح اختلاط مناسب دست یافت . مثلا" در روش های اروپائی که این مشکل وجود دارد سعی می شود از جذب آب و چگالی نیم ساعته ، 1 ساعته یا 2 ساعته و حتی 4 ساعته استفاده گردد.

آنچه در اینجا اهمیت دارد آنست که در هنگام گیرش نسبت آب به سیمان واقعی چقدر است و با دانستن اینکه آبهای موجود در بتن ، در سنگدانه یا خمیر سیمان است به این نتیجه رسید که آب آزاد واقعی چیست و چقدر می باشد . مسلما" کارآئی و اسلامپ را آب آزاد مربوط به زمانهای کوتاهتر مثل 15 دقیقه یا 30 دقیقه تعیین می کنند . این امر مستلزم آنست که رژیم جذب آب سبکدانه را بدانیم و در هر حالت چگالی سبکدانه را محاسبه کنیم .

2. روش حجمی ( Volumetric ) :
در روش حجمی از یک مخلوط آزمون با مقادیر تخمینی استفاده می شود ( آب ، سیمان ، سنگدانه ریز و درشت ) . پس از ساخت مخلوط آزمون و انجام آزمایشهای لازم مانند : اسلامپ ، درصد هوا و وزن مخصوص بتن تازه و مشاهده قابلیت تراکم ، ماله خوری و کارآئی ، خصوصیات دیگر نیز می تواند در زمانهای بعد بدست آید ( مثل مقاومت و ..... ) . اما پس از ساخت بتن و اندازه گیری وزن مخصوص بتن تازه ، با توجه به وزن مصالح مورد استفاده در ساخت بتن ، حجم بتن حاصله تعیین می شود . حجم محاسباتی بتن نیز قبلا" مشخص شده است و لذا و اصلاح در مخلوط برای یکی شدن این ها صورت می گیرد . مسلما" باید اهداف مقاومتی و دوام نیز تأمین گردد . در اینجا نیز مشکل چگالی ذرات و جذب آب وجود دارد که معمولا" رطوبت و چگالی موجود مد نظر قرار می گیرد . لازم به ذکر است که این روش برای بتن های نیمه سبکدانه و تمام سبکدانه کاربرد دارد. همچنین در این روش از حجم سنگدانه ها بصورت شل استفاده می گردد .


3. روش وزنی یا فاکتور چگالی ( Weight Method or Specificgravity factor Method ) :
این روش صرفا" برای سبکدانه درشت و ریز دانه معمولی کاربرد دارد یعنی صرفا" برای بتن نیمه سبکدانه مورد استفاده قرار می گیرد . در این روش از فاکتور چگالی بجاب چگالی ذرات سبکدانه استفاده می شود . فاکتور چگالی تعریف خاصی است که فقط در ACI 211.2 ( در ضمیمه A ) آمده است و با تعریف چگالی تفاوت دارد . S فاکتور چگالی بصورت زیر می باشد. C وزن سبکدانه ( خشک یا مرطوب ) و B وزن پیکنومتر پر از آب و A وزن پیکنومتر پر از آب و سبکدانه می باشد .


بنابراین در این تعریف وضعیت رطوبتی مشخص نیست و میتواند از حالت خشک تا کاملا" اشباع انجام شود اما باید وضعیت رطوبتی در هر مورد گزارش شود یعنی بگوئیم فاکتور چگالی برای سبکدانه ای با رطوبت معین برابر S می باشد . با توجه به روند معمولی طرح اختلاط امریکائی ، مقدار آب آزاد ، نسبت آب به سیمان ، مقدار سیمان ، وزن سبکدانه درشت خشک و مرطوب بدست می آید که در این رابطه مدول زیری ماسه و حداکثر اندازه سنگدانه ها و کارآئی مورد نیاز کاربرد دارد . جذب آب سبکدانه می تواند طبق دستورهای استاندارد موجود و یا ضمیمه B مربوط به ACI 211.2 مشخص شود که بر این اساس آب کل بدست می آید . در این روش نیز باتوجه به وزن یک متر مکعب بتن مقدار ماسه بدست می آید و بتن مورد نظر با اصلاحات رطوبتی ساخته شده و حک و اصلاح لازم بر روی مقادیر بدست آمده صورت می گیرد تا بتن مطلوب حاصل شود .


کاربردهای بتن سبک
همانطور که می دانیم بتن سبک می تواند به صورت های مختلفی طبقه بندی شود ، مثلا" سازه ای و غیر سازه ای . از این نوع طبقه بندی می توان کاربردها را حدس زد . اما گاه از طبقه بندی دیگری استفاده می نمائیم مثل بتن سبکدانه ، بتن اسفنجی و بتن فاقد ریز دانه . در این نوع طبقه بندی ظاهرا" نمی توان کاربردها را حدس زد .

• ساخت قطعاتی است که صرفا" جنبه پر کننده دارند . در نوع سازه ای نیز دو نوع بتن داریم : مسلح و غیر مسلح . مثلا" اجزاء سازه ای غیر مسلح مثل بلوکهای ساختمانی را باید از این جمله موارد دانست . بتن سبکدانه ای سازه ای مسلح کاربردهائی شبیه بتن معمولی مسلح دارد و حتی ممکن است پیش تنیده هم باشد . جالب است بدانیم بتن های سبکدانه سازه ای مسلح در ابتدا عمدتا" در ساخت کشتی های تجاری و جنگی در جنگ جهانی اول از سال 1918 تا 1922 بکار رفته است . کشتی Atlantus به وزن 3000 تن در سال 1918 و کشتی Selmaبه وزن 7500 تن و طول 132متر در سال 1919 به آب افتادند . همچنین در جنگ جهانی دوم ( تا اواسط جنگ) بدلیل محدودیت هائی در تولید ورق فولادی ( مانند جنگ جهانی اول ) کشتی ها و بارج های زیادی ساخته شدند که در همه آنها از بتن سبکدانه ( و معمولا" سبکدانه رسی منبسط شده ) استفاده شده بود . 24 کشتی اقیانوس پیما و 80 بارج دریائی تا پایان جنگ جهانی دوم در امریکا ساخته شد که ظرفیت آنها از 3 تا 000/ 140 تن بود .

جالب است بدانیم تا این اواخر یک کشتی بنام Peralta که در جنگ جهانی اول ساخته شده بود ، شناور بود و آزمایشهای ارزشمندی نیز بر روی آن انجام شده است که نشان دوام عالی بتن آن از نظر خوردگی میلگردها و کربناسیون می باشد .

مخازن شناور آب و مواد نفتی از جمله موارد استفاده بتن سبکدانه ای مسلح در طول دوران جنگ جهانی اول و دوم بوده است که ظاهرا" بعدها نیز بر خلاف ساخت کشتی ها ، تولید و ساخت آنها ادامه یافته است اما بدلیل اقتصادی در زمان صلح بواسطه وفور ورق فولادی ، تولید کشتی مقرون به صرفه نمی باشد .
در سالهای 1950 و 1960 پل ها و ساختمانهای زیادی با بتن سبکدانه مسلح سازه ای در دنیا ساخته شد . بطور مثال در ایالات متحده و کانادا بیش از 150 پل و ساختمان از این نوع مورد بهره برداری قرار گرفت . بطور مثال ساختمان هتل پارک پلازا در سنت لوئیز امریکا ، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سیتی در سال 1929 از ساختمانهائی هستند که در دهه 20 و 30 میلادی ساخته شده اند .

ساختمان 42 طبقه در شیکاگو ، ترمینال TWA در فرودگاه نیویورک ( 1960 ) ، فرودگاه Dulles واشنگتن در 1962 ، کلیسائی در نروژ در 1965 ، پلی در وایسبادن آلمان در 1966 و پل آب بر در روتردام هلند در 1968 از جمله این موارد هستند . در هلند ، انگلستان ، ایتالیا و اسکاتلند در دهه 70 و 80 میلادی پلهائی از نوع ساخته شده اند .

مخازن عظیم گاز طبیعی ، اسکله شناور ، مخزن نفت در زیر آب و ساختمانهای فرا ساحلی مانند سکوهای استخراج نفت و گاز با بتن سبکدانه مسلح سازه ای ساخته شده اند که اغلب بصورت نیمه سبکدانه و گاه تمام سبکدانه بوده اند . سکوی بزرگ پرش اسکی ، جایگاه تماشاچی در برخی استادیومها و همچنین سقف این استادیومها گاه از بتن سبکدانه ساخته شده است .

بزرگترین بنای بتن سبکدانه ، یک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد. در هلند در سالهای 60 تا 73 میلادی 15 پل با دهانه بزرگ با بتن سبکدانه ساخته شده است. در سالهای دهه 70 میلادی ساخت بتن های سبکدانه پر مقاومت آغاز شد و در دهه 80 بدلیل نیاز برخی شرکتهای نفتی در امریکا ، نروژ و مکزیک ، ساخت سازه ها و مخازن ساحلی و فرا ساحلی مانند سکوهای نفتی با بتن سبکدانه پر مقاومت آغاز شد که در اواخر دهه 80 و اوائل دهه 90 به بهره برداری رسید و نتایج آن منتشر شده است .

FIP ( fib ) برخی پروژه های مهم ساخته شده با بتن سبکدانه را منتشر نموده است که کاربرد آن را نجومی نشان می دهد .

• بتن اسفنجی معمولا" بع دو نوع گازی و کفی تقسیم میشود . این نوع بتن ها را بتن پوک و متخلخل نیز می نامند و در برخی منابع بتن Cellular نام دارد . اغلب بتن های گازی و کفی غیر سازه ای هستند اما برخی بتن های گازی از قابلیت سازه ای شدن و حتی مسلح شدن برخوردار می باشند .

بتن های اسفنجی عمدتا" پر کننده هستند . ساخت برخی پانل های جداکننده ، ایجاد کف سازی و شیب بندی ، عایق های حرارتی و جاذب صوت از جمله موارد مورد استفاده بتن اسفنج غیر سازه ای است . تولید قطعات و بلوکهای ساختمانی برای بنائی از جمله کاربردهای بتن گازی است . نوعی بتن گازی بنام سیپورکس در سوئد ساخته شد که می توانست مسلح گردد و در ایران نیز مدتی قطعات بتنی مسلح سیپورکسی بکار رفت از جمله دالهای بتن مسلح پیش ساخته برای پوشش سقف از جنس سیپورکس در برخی پروژه های کشور ما مصرف گشته است . قطعات نما از جنس بتن کفی و گازی یا سبکدانه غیر سازه ای نیز تولید و مصرف شده است .

کاربردهای بتن فاقد ریزدانه نیز در مبحث جداگانه ای نیز ارائه شده است .



منتشر شده توسط انجمن بتن ایران در تاریخ ۱۳۹۰ چهارشنبه ۹ شهریور
کدخبر:5482منبع: انجمن بتن ایرانتاریخ انتشار:۱۳۹۰ نهم شهریورلینک خبر: http://www.memarinews.com/Pages/News-5482.aspx

همه چیز در مورد بتن(پروژه بتن)


بتن و فولاد دو نوع مصالحی هستند که امروزه بیشتر از سایر مصالح در ساختمان انواع بناها از قبیل ساختمان پلها،ساختمان سدها، ساختمان متروها،ساختمان فرودگاه ها و ساختمان بناهای مسکونی و اداری و غیره به کار برده می شوند.و شاید به جرأت می توان گفت که بدون این دو پیشرفت جوامع بشری به شکل کنونی میسر نبود.با توجه به اهدافی که از ساخت یک بنا دنبال می شود،بتن و فولاد به تنهایی و یا به صورت مکمل کار برد پیدا می کنند. فولاد به لحاظ اینکه در شرایط به دقت کنترل شده ای تولید می شود و مشخصات و خواص آن از قبیل تعیین و با آزمایشات متعددی کنترل می شود،دارای کاربری آسانتر از بتن است. اما بتن در یک شرایط کاملا متفاوتی با توجه به پارامتر های مختلف از قبیل نوع سیمان،نوع مصالح و شرایط آب و هوایی تولید و استفاده می شود و عدم اطلاع کافی از خواص مواد تشکیل دهنده بتن و نحوه تولید و کاربرد آن می تواند ضایعات جبران ناپذیری را به دنبال داشته باشد.
با توجه به پیشرفت علم و تکنولوژی در قرن اخیر، علم شناخت انواع بتن و خواص آنها نیز توسعه قابل ملاحظه ای داشته است، به نحوی که امروزه انواع مختلف بتن با مصالح مختلف تولید و استفاده می شود و هر یک خواص و کاربری مخصوص به خود را داراست.هم اکنون انواع مختلفی از سیمانها که حاوی پوزولانها ،خاکستر بادی،سرباره کوره های آهن گدازی،سولفورها،پلیمرها،ال یافهای مختلف،و افزودنیهای متفاوتی هستند،تولید می شد. ضمن اینکه تولید انواع بتن نیز با استفاده از حرارت،بخار،اتوکلاو،تخلیه هوا،فشار هیدرولیکی،ویبره و قالب انجام می گیرد.
بتن به طور کلی محصولی است که از اختلاط آب با سیمان آبی و سنگدانه های مختلف در اثر واکنش آب با سیمان در شرایط محیطی خاصی به دست می آیدو دارای ویژگیهای خاص است.

و مقاله ...

ولین سؤالی که پیش می آید این است که چه رابطه ای بین تشکیل دهنده بتن باید وجود داشته باشد تا یک بتن خوب به دست آید و اصولا بتن خوب دارای چه شرایط و ویژگیهایی است. رابطه بین اجزاء تشکیل دهنده بتن،در خواص فیزیکی و شیمیایی و همچنین نسبت اختلاط آنها با هم است.چه اگر مصالح یا آب و سیمانی با خواصی مناسب بتن با هم مخلوط گردند و در شرایط و محیطی مناسب به عمل آیند،یقینا بتن خوبی حاصل می شودو اصولا بتن خوب، بتنی است که دارای مقاومت فشاری دلخواه و رضایت بخشی باشد. رسیدن به یک مقاومت فشاری دلخواه و رضایت بخش بدین معناست که سایر خواص بتن مانند مقاومت کششی، وزن مخصوص، مقاومت دربرابر سایش، نفوذ ناپذیری، دوام، مقاومت دربرابر سولفاتها و ... نیز همسو با مقاومت فشاری، بهبود یافته و متناسب می شوند.
اگر چه شناخت مصالح مورد مصرف در ساخت بتن و همچنین خواص مختلف بتن کار آسانی نیست اما سعی می شود به خواص عمومی مصالح و همچنین بتن پرداخته شود.
بتن اینک با گذشت بیش از 170 سال از پیدایش سیمان پرتلند به صورت کنونی توسط یک بنّای لیدزی، دستخوش تحولات و پیشرفتهای شگرفی شده است.در دسترس بودن مصالح آن، دوام نسبتاً زیاد و نیاز به ساخت و سازهای فراوان سازه های بتنی چون ساختمان ها، پل ها، تونل ها، سدها، اسکله ها، راه ها و سایر سازه های خاص دیگر، این ماده را بسیار پر مصرف نموده است.
اینک حدود سه تا چهار دهه است که کاربرد این ماده ارزشمند در شرایط ویژه و خاص مورد توجه کاربران آن گشته است. اکنون کاملاً مشخص شده است که توجه به مقاومت تنها به عنوان یک معیار برای طرح بتن برای محیطهای مختلف و کاربریهای متفاوت نمی تواند جوابگوی مشکلاتی باشد که در درازمدت در سازه های بتنی ایجاد می گردد. چند سالی است که مسأله پایایی و دوام بتن در محیط های مختلف و به ویژه خورنده برای بتن و بتن مسلح مورد توجه خاص قرار گرفته است.مشاهده خرابی هایی با عوامل فیزیکی و شیمیایی در بتن ها در اکثر نقاط جهان و با شدتی بیشتر در کشور های در حال توسعه، افکار را به سمت طرح بتن هایی با ویژگی خاص و با دوام لازم سوق داده است. در این راستا در پاره ای از کشورها مشخصات و دستورالعمل ها واستانداردهایی نیز برای طرح بتن با عملکرد بالا تهیه شده و طراحان و مجریان در بعضی از این کشورهای پیشرفته ملزم به رعایت این دستورالعمل ها گشته اند.
در مواد تشکیل دهنده بتن نیز تحولات شگرفی حاصل شده است. استفاده از افزودنی های مختلف به عنوان ماده چهارم بتن، گسترش وسیعی یافته و در پاره ای از کشورها دیگر بتنی بدون استفاده از یک افزودنی در آن ساخته نمی شود. استفاده از سیمان های مختلف با خواص جدید و سیمان های مخلوط با مواد پوزولانی و نیز زائده های کارخانه های صنعتی روز به روز بیشتر شده و امید است که بتواند تحولی عظیم در صنعت بتن چه از نقطه نظر اقتصادی و چه از نظر دوام و نیز حفظ محیط زیست در قرن آینده بوجود آورد. در سازه های بتنی مسلح نیز جهت پرهیز از خوردگی آرماتور فولادی از مواد دیگری چون فولاد ضد زنگ و نیز مواد پلاستیکی و پلیمری (FRP) استفاده می شود که گسترش آن منوط به عملکرد آن در دراز مدت گشته است. با توجه به نیاز روز افزون به بتن های خاص که بتوانند عملکرد قابل و مناسبی در شرایط ویژه داشته باشند،سعی شده است تا در این مقاله به پاره ای از این بتن ها اشاره گردد. کاربرد مواد افزودنی به ویژه فوق روان کننده ها و نیز مواد پوزولانی به ویژه دوده سیلیس در تولید بتن با مقاومت زیاد و با عملکرد خوب مختصراً آورده می شود. بتن های خیلی روان که تحولی در اجرا پدید آورده است و نیز بتن های با نرمی بالا برای تحمل ضربه و نیروهای ناشی از زلزله نیز از مواردی است که باید به آنها اشاره نمود. کوشش های فراوان برای مبارزه با مسأله خوردگی آرماتور در بتن و راه حل ها و ارائه مواد جدید نیز در اواخر سالهای قرن بیستم پیشرفت شتابنده ای داشته است که به آنها اشاره خواهد شد.

افزودنی های خاص در شرایط ویژه :

برای ساخت بتن های ویژه در شرایط خاص نیاز به استفاده از افزودنی های مختلفی می باشد. پس از پیدایش مواد افزودنی حباب هواساز در سالهای 1940 کاربرد این ماده در هوای سرد و در مناطقی که دمای هوا متناوباً به زیر صفر رفته و آب بتن یخ می زند، رونق بسیار یافت. این ماده امروز یکی از پر مصرف ترین افزودنی ها در مناطق سرد نظیر شمال آمریکا و کانادا و بعضی کشورهای اروپایی است.
ساخت افزودنی های فوق روان کننده که ابتدا نوع نفتالین فرمالدئید آن در سالهای 1960 در ژاپن و سپس نوع ملامین آن بعداً در آلمان به بازار آمد شاید نقطه عطفی بود که در صنعت افزودنی ها در بتن پیش آمد. ابتدا این مواد برای کاستن آب و به دست آوردن کارایی ثابت به کار گرفته شد و چند سال بعد با پیدایش بتن های با مقاومت زیاد نقش این افزودنی اهمیت بیشتری یافت. امروزه بتن های مختلفی برای منظور ها و خواص ویژه و نیز به منظور مصرف در شرایط خاص با این مواد ساخته می شود که ازمیان آنها به ساخت بتن های با مقاومت زیاد، بتن های با دوام زیاد، بتن های با مواد پوزولانی زیاد (سرباره کوره های آهن گدازی و خاکستر بادی)، بتن های با کارایی بالا، بتن های با الیاف و بتن های زیر آب و ضد شسته شدن می توان اشاره نمود.
بتن های با کارآیی بسیار زیاد که چند سالی است از پیدایش آن در جهان و برای اولین بار در ژاپن نمی گذرد، تحول جدیدی در صنعت ساخت و ساز بتنی ایجاد کرده است. این بتن که نیاز به لرزاندن نداشته و خود به خود متراکم می گردد، مشکل لرزاندن در قالب های با آرماتور انبوه و محلهای مشکل برای ایجاد تراکم را حل نموده است. این بتن علیرغم کارایی بسیار زیاد خطر جدایی سنگدانه ها و خمیر بتن را نداشته و ضمن ثابت بودن کارایی و اسلامپ تامدتی طولانی می تواند بتنی با مقاومت زیاد و دوام و پایاپی مناسب ایجاد کند. در طرح اختلاط این بتن باید نسبت های خاصی را رعایت نمود. به عنوان مثال شن حدود 50 درصد حجم مواد جامد بتن را تشکیل داده و ماسه حدود 40 درصد حجم ملات انتخاب می شود. نسبت آب به مواد ریزدانه و پودری بر اساس خواص مواد ریز بین 9/0 تا 1 می باشد. با روش آزمون و خطا نسبت دقیق آب به سیمان و مقدار ماده فوق روان کننده مخصوص برای مصالح مختلف تعیین می گردد. از این بتن با استفاده از افزودنی دیگری که گرانروی بتن را می افزاید در زیر آب استفاده شده است.

بتن های با عملکرد و دوام زیاد

از آنجا که رسیدن به مقاومت بالا در بتن از اهداف دست اندرکاران کارهای بتنی در دو دهه اخیر بوده است، ابتدا این نوع بتن با مقاومت بیش از MPA50 ساخته شد.با پایین آوردن نسبت آب به سیمان تا حد 3/0 رسیدن به چنین مقاومتهایی بسیار آسان است. برای ساخت بتن هایی با مقاومت بیشتر و در حد Mpa 110-80 و برای تقویت ناحیه فصل مشترک سنگدانه درشت و خمیر سیمان مواد سیلیسی فعال و غیر بلوری به نام دوده سیلیس به کار گرفته شد. همزمان سنگدانه هایی با مقاومت بیشتر و با دانه بندی مناسب تر و با کنترل حداکثر اندازه سنگدانه در این مخلوط ها به کار رفت.
از آنجا که در کاربرد این بتن گاه مقادیر بالایی سیمان و بیش از 400 کیلوگرم (حتی تا 500 کیلوگرم) مصرف می شد، علاوه بر گرانی این بتن، ترک هایی نیز حین ساخت به دلیل جمع شدگی پلاستیکی و ناشی از خشک شدن بیشتر این بتن ها و نیز ترک های حرارتی بوجود آمد. همچنین با افزایش این مقاومت تردی و شکنندگی بتن نیز افزایش یافت. چنین بتنی نمی توانست در شرایط محیطی سخت و محیطهای خورنده به علت وجود ترک های زیاد دوام قابل قبولی داشته باشد.
به منظور افزایش دوام حین افزایش مقاومت ضمن کاربرد دوده سیلیس و کم کردن آب و مصرف فوق روان کننده، مقدار سیمان کاهش یافته و در عوض مواد پوزولانی همچون دوده سیلیس، خاکستر بادی، سرباره کوره های آهن گدازی، خاکستر پوسته برنج و بالاخره پوزولان های طبیعی به صورت مواد ریزدانه جایگزین آن گردید. امروز شاهد ساخت بتن هایی با دوام که نفوذپذیری کمی دارند و در مقابل حملات شیمیایی کلرورها و سولفات ها و گاز کربنیک و بعضاً واکنش قلیایی پایدارتر می باشند، هستیم.
برای مصرف این بتن در سازه های بلند و رفع نقیصه شکنندگی در پاره ای موارد از الیاف های کوتاه استفاده شده تا بدین وسیله نرمی این بتن ها افزایش یابد. از مزایای عمده این بتن ها کاهش وزن ساختمان ها به علت کم کردن ابعاد ستون ها، صرفه جویی در میزان بتن و فولاد، کوتاه شدن دوران ساخت، تغییر شکل های وابسته به زمان کمتر و پایایی و داوم بشتر آ نها می باشد.
به منظور کاستن وزن سازه های بتنی که با بتن با مقاومت زیاد ساخته می شوند چند سالی است که با مصرف بخشی از سنگدانه های سبک در آن، بتن های سبک تری تولید نموده اند. امروزه بتن هایی با وزن مخصوص 2 تن بر متر مکعب و مقاومت های mpa 80-60 در بعضی پروژه ها به کار رفته است. به علت دوام قابل قبولی که این بتن ها در آزمایشات متعدد از خود نشان داده اند مصرف آنها در چند سازه بتنی دریایی در محیط های خورنده در کشورهای نروژ، کانادا، ژاپن، آمریکا و استرالیا گزارش شده است.
در کشور ما نیز اخیراً با تولید دوده سیلیس در کارخانه های داخلی کاربرد این ماده در بتن آغاز گشته است. در چند پروژه در جنوب کشور که به علت داشتن آب و هوای گرم و محیطی خورنده برای بتن و نیز فولاد از سخت ترین شرایط محیطی برای بتن است، بتن با سیمان دارای حدود 7 تا 10 در صد میکرو سیلیس به عنوان جابگزین سیمان استفاده شده است. بایستی توجه داشت که به علت عدم آب انداختگی این بتن و واکنش های سریع و گرمای محیط خطر ایجاد ترک های پلاستیک در ساعات اولیه و سپس ترک های ناشی از خشک شدن و حرارتی در این بتن ها زیاد بوده و در صورت عدم کنترل و دقت و عمل آوری سریع و مناسب علیرغم مقاومت زیاد وجود ترک در این بتن ها سبب افزایش نفوذ پذیری آنها گشته و در نتیحه املاح و مواد خورنده به داخل بتن و خوردگی آرماتور خرابی بتن تشدید می گردد. در پاره ای از تونل های انتقال آب و نیز تونل سدها نیز از این ماده در طرح اختلاط بتن برای بتن پاشی پوشش استفاده شده است. پیوستگی خوب این بتن و کم شدن مصالح بازگشتی و مقاومت و دوام خوب از خصوصیات آن درپوشش تونل ها است. این ماده در لایه نهایی سرریز بعضی سدهای کشور نیز در حال استفاده و یا در آینده استفاده نخواهد شد. مصرف میکرو سیلیس در بتن سبب افزایش مقاومت سایشی و فرسایشی بتن می گردد.

بتن های با نرمی بالا

امزوزه کار برد بتن با نرمی بالاتر که بتواند تغییر شکل های زیاد را بدون شکست تحمل نماید، مورد توجه قرار گرفته است. تحقیقات در خصوص تأمین نرمی لازم در بتن با الیاف های مختلف و حتی حذف آرماتور در حال انجام می باشد. هدف از کاربرد الیاف در بتن افزایش مقاومت کششی، کنترل گسترش ترک ها و افزایش طاقت بتن می باشد تا قطعه بتنی بتواند در مقابل بارهای وارده در یک مقطع ترک خورده تغییر شکل های زیادی را پس از نقطه حداکثر تنش تحمل نماید.
بتن با الیاف مختلف در سال های اخیر در سازه های عمده ای چون رو سازی راهها و فرودگاه ها، پی های عظیم با تغییر شکل های زیاد و به ویژه در پوشش بتنی تونل ها به کار رفته است. در ساخت پوشش تونل ها بتن الیافی با پاشیدن بر جداره شکل می پذیرد. اخیراً برای حذف ترک ها در پوشش تونل هایی که به صورت چند تکه پیش ساخته اجرا می شود از بتن بدون آرماتور و تنها الیاف استفاده شده و این نوع بتن سبب حذف ترک ها در حین عمل آوری و حمل و نقل قطعات و نصب آنها برای کامل کردن مقطع تونل های مترو شده است.
در نوع بسیار جدید بتن الیافی که می توان با آن به حداکثر نرمی در بتن رسید از روش ریختن دوغاب روی الیاف استفاده می شود . در این روش ابتدا الیاف ریخته شده و سپس فضای بین آنها با ملات دوغابی پر می شود. میزان الیاف در این بتن حدود 10 در صد می باشد که حدود 10 برابر میزان الیاف در بتن های الیافی متداول است. با این مصالح لایه های محافظی بدون ترک و تقریبا غیر قابل نفوذ می توان ایجاد نمود. به علت نرمی زیاد این قطعات ظرفیت تغییر شکل پذیری این قطعات به میزان ظرفیت دال های فولادی می رسد. مقاومت فشاری این نوع بتن حدود 110-85 مگا پاسکال و مقاومت خمشی حدود N/m 45-35 می باشد. از این قطعات می توان نه تنها به عنوان لایه های محافظ کوچک استفاده نمود بلکه در باندهای فرودگاه در برابر ضربات عملکرد خوبی نشان می دهند. در کارهای تعمیراتی دال ها می توان از آنها به عنوان لایه روی بتن قدیم و بدون درز و در زمان کوتاهی استفاده نمود.

آرماتورهای غیر فولادی در بتن

در سال های اخیر استفاده محدودی از آرماتورهای غیر فلزی آغاز گشته است هر چند تحقیقات بر روی کاربرد وسیعتر آنها و عملکرد دراز مدت این نوع آرماتورها ادامه دارد این آرماتورها که معروف به آرماتورهای با الیاف پلاستیکی (FRP) هستند از الیاف مختلفی چون الیاف شیشه ای (GFRP) الیاف آرامیدی (Afrp) والیاف کربنی (CFRP) در یک رزین چسباننده تشکیل شده اند.

خاصیت عمده این آرماتورها که سبب کار برد آنها شده است مقاومت در برابر خوردگی آنهاست که می تواند در محیط های بسیار خورنده دوام دراز مدتی داشته باشند. علاوه بر این مقاومت بالا، مقاومت به خستگی بالا، ظرفیت بالای تغییر شکل ارتجاعی، مقاومت الکتریکی زیاد و هدایت مغناطیسی پایین و کم این مواد از مزایای آنها شمرده می شود. البته این مواد معایبی چون کرنش گسیختگی کم و شکننده بودن و خزش زیاد و تفاوت قابل ملاحظه ضریب انبساط حرارتی آنها در مقایسه با بتن را به همراه دارند.
اخیراً از الیاف مختلف شبکه هایی بافته شده و به صورت یک شبکه آرماتور در سطح بتن برای کنترل ترک و کم کردن عرض آن و همچنین در دیوارهای نمای بتنی ازآن استفاده می کنند. تحقیقات روی کاربرد صفحات الیافی به جای صفحات فولادی برای تقویت قطعات خمشی و تیرها و دال ها به ویژه در پل ها ادامه دارد. این صفحات با رزین های اپوکسی به نواحی کششی از خارج اتصال داده می شود. کاربرد صفحات با الیاف کربنی برای این تقویت بیشتر رایج گشته و در چندین پل در ژاپن و در بعضی کشورهای اروپایی از آن استفاده شده است.

مقابله با خوردگی بتن

مسأله خوردگی فولاد در بتن از معضلات عمده کشورهای مختلف جهان است. این مسأله حتی در کشورهای پیشرفته همچون آمریکا، کانادا، ژاپن و بعضی کشورهای اروپایی هزینه های زیادی را برای تعمیر آنها به دنبال داشته است. به عنوان مثال درگزارش های اخیر بررسی پل ها در امریکا حدود 140،000 پل مسأله داشته اند. این مسأله در کشورهای در حال توسعه و در کشورهای حاشیه خلیج فارس بسیار شدیدتر بوده و سازه های بتنی زیادی در زمانی نه چندان طولانی دچار خوردگی و خرابی گشته اند. بررسی ها در این مناطق نشان می دهد که اگر مصالح مناسب انتخاب گردد، بتن با مشخصات فنی ویژه این مناطق طرح گردد، در اجرای بتن از افراد کاردان استفاده شود و سرانجام اگر عمل آوری کافی ومناسب اعمال شود، بسیاری از مسائل بتن بر طرف خواهد گشت. به هرحال برای پیشگیری در سال های اخیر روش ها و موادی توصیه و به کار گرفته شده است که تا حدی جوابگوی مسأله بوده است.
استفاده از آرماتورهای ضدزنگ و نیز آرماتورهای با الیاف پلاستیکیfrp یکی از این روش ها است که به علت گرانی آن هنوز کاملا توسعه نیافته است. به علاوه عملکرد دراز مدت این مواد باید پس از تحقیقات روشن گردد.
از روش های دیگر کاربرد حفاظت کاتدیک در بتن می باشد با استفاده از جریان معکوس با آند قربانی شونده می توان محافظت خوبی برای آرماتورها ایجاد نمود. این روش نیاز به مراقبت دائم دارد ونسبتا پرخرج است ولی روش مطمئنی می باشد.
برای محافظت آمارتور در مقابل خوردگی، چند سالی است که از آرماتور با پوشش اپوکسی استفاده می شود. تاریخچه مصرف این آرماتورها بویژه در محیط های خورنده نشان می دهد که در بعضی موارد این روش موفق و در پاره ای نا موفق بوده است. به هرحال اگر پوشش سالم بکار گرفته شود با این روش می توان حدود 10 تا 15 سال خوردگی را عقب انداخت.
استفاده از ممانعت کننده ها و بازدارنده های خوردگی بتن نیز به دو دهه اخیر برمی گردد. مصرف بعضی از این مواد همچون نیترات کلسیم و نیترات سدیم جنبه تجارتی یافته است. به هر حال عملکرد این مواد در تاخیر انداختن خوردگی در تحقیقات آزمایشگاهی و نیز در محیط های واقعی مناسب بوده است. بازدارنده های دیگری از نوع آندی و کاتدی مورد آزمایش قرار گرفته اند ولی دلیل گرانی زیاد هنوز کاربرد صنعتی پیدا نکرده اند.
برای محافظت بیشتر آرماتور و کم کردن نفوذپذیری پوشش های مختلف سطحی نیز روی بتن آزمایش و به کار گرفته شده است. این پوشش ها که اغلب پایه سیمانی و یا رزینی دارند با دقت روی سطح بتن اعمال می گردند. عملکرد دوام این پوشش به شرایط محیطی وابسته بوده و در بعضی محیط ها عمر کوتاهی داشته و نیاز به تجدید پوشش بوده است. روی هم رفته پوشش های با پایه سیمانی هم ارزانتر بوده و هم به علت سازگاری با بتن پایه پیوستگی و دوام بهتری در محیط های خورنده و گرم نشان می دهند.
با پیشرفت روزافرون انقلاب تکنولوژیک به ویژه در تولید بتن های خاص برای مناطق و شرایط خاص می توان از این بتن ها در ساخت وسازهای آینده استفاده نمود. دانش استفاده صحیح از مصالح، اجرای مناسب و عمل آوری کافی می تواند به دوام بتن ها در مناطق خاص بیفزاید. تحقیفات گسترده و دامنه داری برای بررسی دوام بتن های خاص در شرایط ویژه و در دراز مدت بایستی برنامه ریزی و به صورت جهانی به اجرا گذاشته شود.

تواتر نمونه برداری برای آزمایش مقاومت فشاری بتن

دراکثرقراردادهای طرحهای عمرانی کشور ، ضوابط و مقررات ، آئین نامه های رایج بخصوص آئین نامه بتن ایران جزء مشخصات فنی پیمان بوده و رعایت آنها ضروری است .

پذیرش بتن در کارگاه براساس نتایج آزمایش فشاری نمونه های برادشته شده از بتن مصرفی صورت می پذیرد .
دراکثر طرحها عمرانی کشور و آزمایشگاه ها روش B.S.1881 با قالب مکعبی نمونه گیری انجام و نسبت به حجم بتن مطابق بند 6-5-1-2 آئین نامه بتن ایران می‌باشد:
الف ) برای دالها و دیوارها ، یک نمونه برداری از 30 مترمکعب بتن یا 150 مترمربع سطح
ب ) برای تیرها و کلافها درصورتی که جدا از قطعات دیگر بتن ریزی میشوند ، یک نمونه برداری از هریکصد مترطول
ج ) برای ستونها ، یک نمونه برداری از هر50 مترطول
براین اساس و روش فوق حداقل شش نمونه مکعبی از حجم بتن به ترتیب:
یک نمونه (یک آزمونه ) ـــــــــــــــــــــــــ 7 یا 11 روزه
سه نمونه (سه آزمونه )‌ ـــــــــــــــــــــــ 28 یا 42 روزه
یک نمونه (یک آزمونه )‌ ـــــــــــــــــــــــ 90 یا 125 روزه
یک نمونه (یک آزمونه ) ــــــــــــــــــــــــ کنترل یا آگاهی
به عبارت دیگر حداقل شش نمونه (آزمونه )‌از هربتونیر در مدت تخلیه اش بصورت تصادفی ، با رعایت بند 6-5-1-2 حجم بتن برداشته شود.
با نمونه های فوق طبق ردیف ب بند 6-5-2-1 و بند 6-5-2-2 می توان از نمونه ها ( آزمونه ها ) نسبت به ارزیابی پذیرش بتن اعلام نظر شود ولی مغایر با ردیف الف بند 6-5-2-1 و بند 6-5-1-1 و بند 6-5-1-5 است .

نمونه برداری از بتن

روش آئین نامه بتن ایران
:‌
در بند 6-5-1-1 - مقصود از هر نمونه برداری از بتن ، تهیه دوآزمونه از آن است که آزمایش فشاری آنها در سن 28 روزه یا هر سن مقرر شده دیگر انجام می پذیرد و متوسط مقاومتهای فشاری بدست آمده بعنوان نتیجه نهایی آزمایش منظور میشود .

در هرنمونه برداری از بتن ، تهیه آزمونه های زیر انجام می گیرد:

آزمونه اول ـــــــــــــــــ 7 یا 11 روزه
آزمونه دوم ــــــــــــــــ 28 یا 42روزه
آزمونه سوم ـــــــــــــــ 28 یا 42 روزه
آزمونه چهارم ـــــــــــ 90 یا 125 روزه یا آگاهی

لازم به توضیح است که برابر بند 6-5-1-2 و رعایت عملی ردیف الف بند 6-5-2-1 وبا درنظر گرفتن دو آزمونه دوم و سوم بجای کلمه مقاومت نمونه در احجام مختلف می توان طبق بند 6-5-2 نسبت به مقاومت فشاری اظهار نظر کرد .
مقدارنمونه برداری مورد نیاز برای دالها و دیوارها:
تعداد نمونه برداری ـــــــــــــــــــــــــ حجم بتن ( مترمکعب بتن )
سه نمونه برداری ـــــــــــــــــــــــــ 1 الی 90
شش نمونه برداری ـــــــــــــــــــــــــ 91 الی 180
نه نمونه برداری ـــــــــــــــــــــــــ ـــ 181 الی 270
و ....................
حداقل چهار نمونه (آزمونه )‌از هربتونیر در مدت تخلیه اش بصورت تصادفی برداشته شود و اگر حجم بتن کم باشد ، نمونه ها ی متوالی میبایستی همزمان با تخلیه 4/1 و 4/2 و 4/3 فواصل مخلوط بتن داخل مخلوط کن برداشته شود و اگر بیشتر شود ، مابین فواصل مقادیر تخلیه شده به همان نسبت بطور مساوی فاصله می گذاریم.
نمونه های متوالی به نمونه هایی گفته میشود که فاصله زمانی هر نمونه برداری با نمونه برداری بعد از آن بیشتر از سه شبانه روز نباشد.
لازم به توضیح است که نمونه برداری ، واحد آئین نامه بتن ایران به ترتیب نمونه استوانه ایی ، مگا پاسگال مبیاشد که برای تبدیل نمونه مکعبی 15*15 به نمونه استوانه ای به شرح زیر اقدام میشود.
25=(25/1*2/10 306
20=(20/1*2/10) : 26080 سال گذشته در بسیاری از رشته های ساختمانی کاربرد داشته و با عمر مفید طولانی خود، مصالح با دوامی را به اثبات رسانده است. به هر حال بتن در پروژه های صنعتی بکار برده شده و در معرض شرایط بسیار سخت محیطی قرار گرفته و صدمات ساختاری و کاربردی را در طول عمر خود نشان داده است، که این صدمات از 3 منبع اصلی سرچشمه گرفته اند شامل : پروژه های صنعتی که عموماً توسط طراحان بومی، پیمانکاران بین المللی و کسانی که متخصص در این رشته می باشند، انجام می شود. طراحان این پروژه ها از شرایط سختی که بتن در معرض آن قرار می گیرد اطلاع کافی ندارند. در اکثر مواقع، افراد بهره بردار، نگهدارنده و محافظ این سازه های بتنی بیشتر از متخصصین دارای تجارب کاری در رشته های مکانیک، برق و یا شیمی بوده اند و بنابراین صدمات وارده بر اجزاء بتنی را تشخیص نداده اند. نهایتاً این صدمات عمیق تر و پیشرفته تر می شدند.

ارزیابی و پذیرش بتن درکارگاه

وجود استاندارد ها و آیین نامه های ملی در هرکشور نشانه رشد و توسعه آن کشور است و هدف از ارائه آئین نامه ، حداقل ضوابط و مقرراتی است که با رعایت آن میزان مناسبی از ایمنی ، قابلیت بهره برداری ، پایایی سازه ها تامین میشود.
درطرحهای عمرانی و کارگاه های کشور رعایت استانداردها و آئین نامه ها الزامی است ، اما باتوجه به شرایط اقلیمی ، تنوع مصالح ، نیروی انسانی و ..... وگستردگی کشور ، طرحهای عمرانی و کارگاه ها نیازمند آئین نامه و دستورالعمل خاص بوده و منابع آنها بایستی در دسترس شاغلین دربخش مورد نظر قرارگیرد .
در آئین نامه بتن ایران بند ( 6-5 ) ارزیابی و پذیرش بتن قید گردیده است ، اما باتوجه به اینکه درتهیه آئین نامه بتن ایران از‌ آئین نامه های متفاوت کشورها استفاده شده است ، با شرایط کارگاه های ایران ، ضوابط آزمایشگاه ها در نحوه نمونه گیری ،‌ بررسی بتنهای با مقاومت کم منطبق نیست.
چنانچه میدانیم در کارگاه های عمرانی ، بنا به خطای انسانی ، ماشین آلات ، مصالح متفاوت مصرفی ، شرایط اقلیمی و ... احتمال استفاده از بتنهای با مقاومت کم وجود دارد که در محدوده غیر قابل قبول (بند 6-5-2-2) قرارمیگیرد .
با توجه به هزینه مالی طرح و مدت زمان اجراء آن ، استفاده از بند ( 6-6 ) و بررسی بتن ها اقدامی علمی خوبی است اما عملی نیست . بدین منظور ما باید منطقه تخفیف ، منطقه مشمول جریمه ، منطقه تخریب و بازسازی مجدد را دقیقا" بسته به سازه مورد نظر مشخص کنیم.
الف – منطقه تخفیف
با بررسی فرمولهای ارائه شده در بند 6-5-2-1 و 6-5-2-2 آئین نامه بتن و بند 6-5-2-3 مشخص میشود که به تشخیص طراح بدون بررسی بیشتر به مقدار 5 الی 6 درصد مقاومت فشاری بتن از نظر سازه قابل قبول تلقی میشود .
ب- منطقه مشمول جریمه
درمحاسبات هرسازه حداقل مقاومت فشاری بتن مورد نظر برای طراح بایستی مشخص بوده و در محاسبات منظور شود . با توجه به رده بندی بتن ، طراح میتواند برای جبران مشکلات اجرایی ، ضریب اطمینان یک رده بیشتر از رده محاسباتی درنقشه اجرایی قید نماید و استفاده از رده بیشتر توجیه اقتصادی ندارد . در جدول زیر ( 1- 1 ) محدوده ارزیابی نتایج آزمایش مقاومت فشاری بتن به عیار 350 کیلوگرم برمترمکعب بتن در شرایط آزمایشگاهی و ضریب جریمه تنظیم شده است.
مقاومت فشاری بتن 28 یا 42 روزه (کیلوگرم برسانتی مترمربع ) ـــــــــــــ ضریب جریمه
306 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ــــــــــ 0
296 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــ 56/4
287 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــ 23/7
278 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ 90/9
269 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ــــــــــــــــــــ 57/12
260 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ 25/15
251 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ــــــــــــــــــــ 59/17
242 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ 56/20
233 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ــــــــــــــــــ 26/23
224 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــ 93/25
215 ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ 60/28
ضریب جریمه یا بهای عملیات خارج از مشخصات ، شامل کلیه اقلامی است که منجر به تهیه بتن میگردد . اعم از بتن ( شن ، ماسه ، سیمان و .... ) و هزینه های مربوط به بهاء میلگرد ، قالب بندی و غیره .
لازم به توضیح است که نمونه برداری ، واحد آئین نامه بتن ایران به ترتیب نمونه استوانه ایی ، مگا پاسگال مبیاشد که برای تبدیل نمونه مکعبی 15*15 به نمونه استوانه ای به شرح زیر اقدام میشود .
25=(25/1*2/10 306
20=(20/1*2/10) : 260
ج- منطقه تخریب
درمحاسبات سازه بصورت دستی یا کامپیوتری ، حداقل رده بتن توسط طراح اعمال ، ولی محاسبات نتیجه قابل قبول ارائه نمیگردد . این رده بتن مرز تخریب بوده و مقاومت فشاری کمتر از آن برای سازه قابل قبول نیست .

نفوذپذیری و دوام

بتن در

1-

2-

3-
80 سال گذشته در بسیاری از رشته های ساختمانی کاربرد داشته و با عمر مفید طولانی خود، مصالح با دوامی را به اثبات رسانده است. به هر حال بتن در پروژه های صنعتی بکار برده شده و در معرض شرایط بسیار سخت محیطی قرار گرفته و صدمات ساختاری و کاربردی را در طول عمر خود نشان داده است، که این صدمات از 3 منبع اصلی سرچشمه گرفته اند شامل : پروژه های صنعتی که عموماً توسط طراحان بومی، پیمانکاران بین المللی و کسانی که متخصص در این رشته می باشند، انجام می شود. طراحان این پروژه ها از شرایط سختی که بتن در معرض آن قرار می گیرد اطلاع کافی ندارند. در اکثر مواقع، افراد بهره بردار، نگهدارنده و محافظ این سازه های بتنی بیشتر از متخصصین دارای تجارب کاری در رشته های مکانیک، برق و یا شیمی بوده اند و بنابراین صدمات وارده بر اجزاء بتنی را تشخیص نداده اند. نهایتاً این صدمات عمیق تر و پیشرفته تر می شدند.

پالایشگاههای کشورهای منطقه خلیج فارس بیان کننده یک منبع اساسی درآمد مالی برای این کشورها بوده اند، و این تأسیسات بزرگ از سالهای
1950 توسط شرکتهای پیمانکار بین المللی از آمریکا و اروپا ساخته شده اند. بسیاری از این سازه های بتنی ساخته شده، هنوز در دست بهره برداری هستند و بسیـاری نیـز تعمیر و ترمیم یافته اند تا عمر مفید طولانی تری را به آنها بیفزایند. اغلب بخاطر سرمایه گذاری های کلان در این نوع تأسیسات، عمر مفید طراحی شده آنها عموماً بسیار طولانی تر بوده و تعدادی از آنها نیز از رده خارج شده اند.

آقای اکانر
( Oconner ) در مطالعات اخیر خود اطلاعات جدیدی را درباره پالایشگاه ها ارائه داده، که قبل از این اطلاعات کافی درباره صدمات وارده توسط آب شور دریا بر سازه های بتنی پالایشگاه ها در این منطقه وجود نداشت.

مطالعات دیگری نیز اخیراً توسط ایمن ابراهیم
( Iman A Ibrahim ) و همکاران او درباره عملکرد بتن بکار گرفته شده در پالایشگاه در این منطقه انجام یافته و تغییرات خاص بتنی را که در معرض شرایط محیط قرار گرفته، ارائه داده اند.

بتن که در شرایط سخت آب و هوایی خلیج فارس و نیز در پالایشگاهها و در معرض شرایط آب و هوایی میکرونی محیط دیگر مناطق دنیا قرار گرفته است، می تواند بخاطر شرایط ذیل تخریب شود : درجه حرارت بسیار بالا در کوره های بلند در پالایشگاه ها و ترک خوردگی در اثر آن. حمله سولفات در نتیجه گازهای سولفوریک همچون SO2 و H2S که در زمان کار تولیدی پالایشگاه، بعنوان مواد جانبی تولید صنعت نفت ایجاد می شوند و همچنین رطوبت زیاد محیط خلیج فارس. اسید سولفوریک وباران اسیدی و حملات آنها بر سطح بتن و واکنش شیمیایی SO2 که با رطوبت موجود تولید سولفات کلسیم نموده که به سادگی بخاطر محلول بودن آن توسط آب شسته می شود، بنـابراین، تـولید سفیدک زدگی ( Leaching ) انجام می شود و در نتیجه مقاومت بتن کاهش می یابد، بخصوص تحت فعالیت مداوم SO2 و سولفات کلسیم تولید شده، در صورت شستشو جهت تمیز کاری با آب دریا، کریستـال گچ بوجود می آیـد که بـا سیـمان واکـنش نـشان داده و تاماسایت (Thaumasite) تولید می شود که باعث تولید خمیر بسیار نرمی می شود. نرخ و پیشرفت خرابی توسط حمله سولفاتها بستگی به غلظت سولفات، نوع نمک سولفات، نفوذپذیری، و تخلخل بتن دارد. خرابی، در زمانی اتفاق می افتد که بتن از یک طرف تحت شرایط فشار آب و از طرف دیگر هوا باشد. تر و خشک شدن در اثر نشت آب و یا شستشوی سازه بتنی با آب شور دریا، هیـدروکربورهای ریختـه شده روی سطح بتن، بـاعث نفوذ آب در خلل و فرج خمیر سیمان و سنگدانه ها و در نتیجه افزایش نفوذپذیری می شود. نفوذ یون کلر و حملات سولفاتها باعث خوردگی آرماتورها و در نتیجه ترک خوردگی می شوند. حرکات ماشین آلات، باعث تولید ترکها در بتن می شود. نشت بخار و گازها از لوله های موجود در پالایشگاهها باعث خرابی سطوح بتنی و در نتیجه اجزاء تشکیل دهنده بتـن می شود. علاوه بـر شرایـط مضر بر بتن، شرایط نگهداری و حفاظت سازه های بتنی نیز مهم می باشند.

اهمیت مطالعات اخیر بر این است که در چندین سال گذشته بیشتر مطالعات در لابراتور
انجام یافته ولی عملیات تحقیقاتی اخیر در محل کارگاه و در شرایط واقعی و عملکرد 40 ساله بتن در شرایط سخت پالایشگاه می باشد.

ساختار بتن :

در حال حاضر بتن دیگر همان مصالح ساختمانی قدیمی نیست

Cement + Agregates + Water + Admixture or Adetives = Concrete
. بسیاری از مواد معدنی و آلی جهت اصلاح خواص آن برای ساخت بتن دوره جدید به سیمان پرتلند اضافه می شوند. برخلاف بتن ساخته شده فقط با سیمان پرتلند، خواص بتن دوره جدید به خاطر پیچیدگی خاص خود کاملاَ روشن و مدون نیست، ولی آنالیز بسیاری از مواد مصرفی فعال روی دوام بتن شفاف تر از قبل می باشند.

سیستم سخت شدن سیمان با آب :

تـرکیـب سیـمان بـا آب منـجـر بـه تـشکیـل یـک کـنـگلـو مـرای سخت شده بـا سـاختـار پـیـچیـده و ترکیبات شیمیایی جدیدی می شود که خمیر سیمان سخت شده یا
Paste نامیده می شود.

ساختار تخلخل موئینه :

سطح داخلی ذرات سیمان سخت شده در بتن تا حدود زیادی تعیین کننده میزان یا شدت تداخل متقابل بتن با آب و هوای میکرونی محیط اطرافش می باشد

فـرآیند مخرب :

فعالیت مخربی در سطوح بین حدفاصل آب و هوای میکرونی محیط و بتن شروع می شود و به طرف عمق و توده بتن
(جسم بتن) از طریق خلل و فرجهای موئینه منتشر شده و پیشروی می کند. مساحت سطح داخلی خمیر سیمان سخت شده چندین برابر مساحت سطح خارجی ساختار بتن است.

این مطلب بیانگر میل بیشتر به آسیب دیدگی
(شدت بیشتر آسیب دیدگی) حتی در زمانی است که لایه مواد عملاً درگیر در تداخل شیمیایی بسیار نازک باشد که در مقایسه با نسبت سرعت نفوذ مواد آسیب رسان (مضر) به واکنش آنها سنجیده می شود.

درجه تخریب ناشی از شکل های مختلف آسیب دیدگی اساساً با صور
(Features) آسیب دیده ساختار بتن و بخصوص بوسیله ساختمان ظریف سیمان سخت شده تعیین یا تعریف می شود.

از آنجائیکه آسیب دیدگی در سطح تماس خمیر سیمان وفلز، بوجود می آید بنابراین نفوذپذیری بتن تعیین کننده میزان خرابی آن می باشد.

نفوذپذیری بتن تابعی از ساختار آن است و بنابراین داشتن درک مناسب از تمامیت ساختار بتن و پارامترهایی که آن را تعریف می کند، رابطه آن با تکنولوژی و بالاخره رابطه بین نفوذپذیری، دوام، ساختار بتن و ایستایی بتن در مقابل عوامل آسیب رسان
(مضر) با اهمیت می باشند.

رابطه بین نفوذپذیری و دوام بتن

ساختار متخلخل بتن قابلیت ایستادگی آن را در مقابل عبور سیالات یا گازها، تحت گرادیانهای مختلف تعیین می کند، یک سیال می تواند تا عمق کامل بتن تحت یک گرادیان بوجود آمده بطور مثال دیواره بتنی سازه آبی از جمله سد، مخزن آب و فاضلاب و غیره حرکت کند.

مواد مضر
(ترکیبات) در محیط گازی یا مایع می توانند به درون بتن بواسطه وجود فشار و غلظت، نفوذ کنند، انتقال از طـریق نفـوذ (انتـشار) بـا پدیده تماس (Connection ) می تواند تشدید شود. گازها و مایعات می توانند همچنین دراثر بوجود آمدن یک گرادیان حرارتی که بین دو سطح مخالف یک عضو بتنی در یک سازه با گرادیان رطوبتی پدیدار شده در جای جای بتن (که دارای یک جسم متخلخل و لوله های موئینه است)، حرکت کنند. گرادیانهای رطوبتی و حرارتی، انتقال آب (بصورت بخار یا مایع) را به درون بتن تعیین می کنند و در نتیجه تنظیم کننده میزان رطوبت در اعضاء سازة بتنی هستند. مایعات ضمن حرکت، مواد محلول در خود را نیز به همراه خود به میان بتن منتقل می سازند.

نفوذپذیری چیست؟

سرعت انتقال مواد از میان بتن بستگی به ساختار آن دارد
. برای مشخص کردن نفوذپذیری یک ساختار، باید ضریب نفوذپذیری آن تأیین گردد که عبارت است از میزان جریان مایع یا گاز عبوری (معمولاَ بر حسب لیتر) در واحد زمان از میان واحد سطح مقطع، تحت یک گرادیان هیدرولیکی واحد (نسبت هد، یک متر آب، به مسیر عبور، واحد ضخامت بتن بر حسب متر) که معمولاً بطور کمی نفوذپذیری بتن با ضریب نشت مایع (سیال) مشخص می شود که با عوامل نفوذ گاز یا آب با یک شاخص قراردادی تعیین شده و محاسبه می گردد.

ضریب نفوذپذیری با واحد ذیل بیان می شود



سانتیمتر مربع

نفوذپذیری بتن : سانتیمتر مکعب × سانتیمتر (یا) سانتیمتر مکعب × سانتیمتر × ثانیه ×‌ سانتیمتر سانتیمتر مربع × ثانیه × 1 اتمسفر (Concrete Permeability) :

نفوذپذیری بتن یکی از خواص مهم بتن در رابطه با دوام آن است، که این خاصیت، تسهیلاتی را فراهم می کند که آب یا سیالات دیگر بتوانند از میان بتن جریان پیدا کرده و مواد مضر و آسیب رسان را با خود به درون بتن حمل نمایند، به طور مثال :

حمله سولفاتها :

عبارت است از حرکت یونهای سولفات
SO3+ به داخل بتن و ترکیب آنها با آلومیناتها و در نتیجه تورم و ترکیدگی بتن در جایی که واکنش های شیمیایی مضر اتفاق می افتد.

کوکاکا
( Webster) , ( Kukacka ) بیان می کنند که گازهای خشک برای اجزاء ساختمان مضر نمی باشند، ولی همراه با رطوبت به داخل خمیر سیمان نفوذ کرده باعث خرابی بتن می شوند. هرچند SO2 (Sulfur Dioxide) خشک برای بتن مضر نمی باشد، ولی به هر حال یک واحد حجم آب، 45 واحد حجم گاز را حل می کند که محلول اسید سولفوریک حاصل باعث خرابی بتن می شود.

در تـأسیسات صنعتـی، در جائیـکه سولفـور دی اکسیـد از دوده آزاد شده و با رطوبت اتمسفر ترکیب می شود، باعث تولید اسید سولفیدریک

Caco3 + H2SO4 + H2O Caso4 + 2H2O + CO2
(H2SO3) شده که به تدریج با وجود اکسیژن، اسید سولفوریک تولید می شود، و باعث ایجاد باران های اسیدی می شود که برای بتن و فولاد مضر می باشد. این واکنشها، عامل اصلی کاهش وزن مخصوص، مقاومت و دوام بتن می شوند.

که با اجزاء آلومیناتی سیمان ترکیب شده تولید اترینگایت
( Itrringite ) می نماید که به آلومینات – سولفو، کلسیم معروف است. اتـرینگایت در محلول کلـرور حل شده و در زمان شستشوی سطح بتن از روی آن پاک می شود و به دلیل تخلخل زیاد خلل و فـرجهای موئینـه موجود در بتن سخت شده بخاطر نسبت آب به سیمان بالا W/C در زمان ساخت بتن و اثر حمله سولفاتها باعث خرابی بتن می گردد. همچنین می تواند در اثر سفیدک زدن (Leaching) مداوم، سولفات کلسیم و گچ بوجود آید.


مکانیزم فیزیکی داشته که در اثر از دست دادن رطوبت در منافذ موئینه، نمکها غلیظ و کریستاله گردند، که همانند مکانیزم عمل انجماد و ذوب شدن مکانیزم فیزیکی آن سبب ترک خوردگی می شود. واکنش شیمیایی سولفات ها با هیدرواکسید کلسیم آزاد 2(OH)Ca، محصول هیدراسیون ترکیب شده ساختار منافذ بتن را تخریب می نماید. واکنش یـون سولفـات با فـاز C3A سیمان تولیـد اترینگایت حجیم می نماید و سبب ترک خوردگی می شود.

مقاومت در مقابل یخ زدگی :

نفوذ آب به داخل خلل و فرج موئینه، باعث ایجاد تنش در اثر تشکیل کریستالهای یخ زدگی می شود.

حمله قلیایی ها با مصالح سنگی :

حرکت یونهای قلیایی و واکنش با مصالح سنگی در حضور آب منجر به ایجاد ژل متورم می شود.

ایستادگی در مقابل آتش سوزی :

بیرون زدن بخار آب ژلی
(فرار بخار آب) از لایه های گرم شده بالای 105OC باعث قلوه کن شدن بتن و تخریب پوشش روی آرماتورها می شود.

خوردگی آرماتورهای فولادی :

نفوذ یون های کلر به سطح فولاد و باعث ایجاد خوردگی و ترک خوردگی بتن می شود
. یون کلر با آلومینات ترکیب شده تولید کلرور آلومینوم می نماید که مقدار آنرا برای ترکیب شدن با گچ یا سولفات ها کاهش می دهد، در واقع کمک به کاهش ترکیبات سولفاته می شود.

واکنش شیمیایی :

ترکیب مواد شیمیایی با هیدرواکسید کلسیم
2(OH)Ca و سیلیکات کلسیم CSH در مجاورت رطوبت تولید ژل متورم می نماید که سبب ترک خوردگی پوشش بتنی می گردد.

ساختمان خلل و فرج :

از آنجائیکه جریان سیالات از طریق سیستم خلل و فرج موئینه صورت می گیرد، بررسی آزمایش ساختار خلل و فرج داخل بتن ضروری است

Pore Classification

Powers
خلل و فرجهای درون بتن معمولی (Normal Weight Concrete) بخشی از خمیر سیمان را تشکیل می دهند و به لحاظ اندازه حجمی دارای ابعاد بزرگی هستند.

Pore Size Classification for Cement Paste

دسته بندی خلل و فرج خمیر سیمان

در دسته بندی کلاسیک، پیش بینی شده است توسط
Power, Brown yard، خلل و فرج ها به دو دسته زیر تقسیم می شوند :

خلل و فرج های ژلی

(Gel Pores)
: که به همراه تشکیل محصولات هیدراسیون (ژل سیمان) تشکیل می شوند که خلل و فرج ساختاری محسوب می شوند، در حالیکه خلل و فرج لوله های موئینه Capillary Pores به عنوان فضاهائی است که با پر شدن آب بوجود آمده و باقی می مانند.

خلل و فرج میکرونی
(Micro Pores) :

تخلخل ساختاری را تشکیل می دهند، در حالیکه، دلایل کافی وجود دارد که شامل خلل و فرج
Mesu نیز می بـاشند. خلل و فـرج های Mesu و Macro همگی سیستم خلل و فرج لوله های موئینه را تشکیل می دهند.

سیستـم خلل و فـرج در خمیـر سیـمان، یک سیــستم ادامـه دار
(Continuation) را تشکیل می دهد که می توان آن را با سیستم (MIP) Basic Mercury Inmison Porosity اندازه گیری کرد.

با ادامه و پیشروی هیدراسیون و یا کاهش نسبت آب به سیمان، حجم و اندازه خلل و فرج موئینه بطور محسوسی کاهش می یابند
.

اثر درجه حرارت عمل آوری روی خلل و فرج
Effect of Curing Temprature :

توزیع خلل و فرج قویاً تحت تأثیر درجه حرارت عمل آوری می باشد و درجه حرارت بالا، حجم خلل و فرج
(مزو Mesu) بزرگ را افزایش می دهد. Increase the Volume of Large Mesu Pores

جریان در خلل و فرج موئینه
Capillary Flow :

جـریـان در داخل خلل و فرج موئینه از قانون دارسی

dq/dt = KA (Dh / L)
D’ ARCY LAW برای جریان Laminar پیروی می کند.

که در آن

K

K/ = Kh

rg
dq/dt سرعت جریان و A مساحت سطح مقطع نمونه و (Dh / L) گرادیان هیدرولیکی در آن مقطع است. ضریب ثابت اندازه گیری (Proportionality) است که سهولت جریان آب را از میان نمونه بیان می کند. ریب نفوذپذیری یک ماده، ثابت و مستقل از سیال بکار برده شده است.

که در آن
h گرانروی (ویسکوزیته) سیال، r دانسیته و g شتاب ثقل است. در عمل غالباً مقدار اندازه گیری شده K به جای K/ به عنوان ضریب نفوذپذیری گزارش نمی شود.

اولین مطالعه توجیهی جامع عوامل مؤثر در نفوذپذیری خمیر سیمان با استفاده از این دیدگاه
Approach توسط پاور ( Power ) و همکارانش انجام شده است. آنها بطور کمی اثر نسبت آب به سیمان (W/C) و زمان عمل آوری مرطوب (Micro Curing) را نشان دادند.

در این تحقیق نشان داده شده است که خمیرهای نمونه عمل آمده می توانند نفوذپذیری بسیار پائین، معادل ویژگی صخره متراکم
(Dense) را داشته باشند. حتی اگر مجموعه احجام خلل و فرج این خمیرها بالا باشند. این مطلب از این واقعیت ناشی می شود که سیستم خلل و فرج موئینه که از میان آنها به آسانی آب جریـان پیـدا می کنـد از طریق رسوب محصولات هیدراسیون مسدود می شوند. تشکیل چنین پدیده ای، قویاً به نسبت آب به سیمان در خمیر سیمان بستگی دارد. در چنین سیستم خلل و فرج غیر پیوسته ای جریان از طریق حرکت از میان خلل و فرج های بسیار ریز (Gel Pores) ژل سیمان (Micro Pores) محدود می شود، بطوریکه جریان دارسی به مقدار زیادی با جذب سطحی فیزیکی آب (Adsorption) در روی سلولهای سطح خلل و فرج بسیار تعدیل و ملایم می گردد.

پاور

( C ) 0.7 + 124 2 ) - ) p × e 2( 1-C ) 10 –12 × 1.36 K1 =

h(q) C T 1-C
(Power ) و همکارانش، یک دیدگاه تئوری برای ساختن مدل این پدیده با استفاده از قانون Stores روی یک سوسپانسیون غلیظ بوجود آورده اند. معادله زیر با استفاده از تعدادی از فرضیات ساده شده بدست امده است که مطابقت خوبی بین مشاهدات ومقادیر محاسبه شده بین درجه حرارت صفر تا 30 درجه سانتیگراد نشان می دهد

پمپ‌ بتن و مواد افزودنی به پمپ بتن

پمپ‌ بتن و مواد افزودنی به پمپ بتن

پمپ‌ بتن و مواد افزودنی به پمپ بتن
پمپ بتن برای انتقال بتن استفاده میشود و انواع مختلفی از پمپ بتن وجود دارد. که شامل پمپ بتن زمینی، پمپ بتن دکل پمپ بتن موبایل یا سیار و غیره میباشد.
استفاده از انواع روان کننده ها بتن برای پمپ بتن به امر حیاتی تبدیل شده است. این مواد با اهداف گوناگون از جمله پمپ که به بتن با اسلامپ بالا نیاز است، مورد استفاده قرار مى گیرند. فابیر تولید کننده انواع روان کننده بتن مناسب برای استفاده در پمپ بتن می باشد. با استفاده از روان کننده بتن مناسب برای پمپ بتن، پمپ پذیری بالارفته و باعث می شود که استهلاک پمپ بتن پایین بیاید.

پمپ شاتکریت

پمپ شاتکریت

شات کریت یا همان بتن پاششی
 شات کریت یا همان بتن پاششی که بوسیله پمپ شات کریت به سطوح پاشیده می شود می شناسیم. با استفاده از مواد افزودنی فابیر در پمپ شات کریت یا پمپ بتن پاششی که موجب بالا رفتن استحکام بلند مدت و کوتاه مدت شات کریت یا بتن پاششی میشود همچنین با اضافه کردن این ماده به پمپ بتن شات کریت تولید شده شاتکریت دیسپرس شده و ضریب بازگشت آن بسیار کاهش میابد از مزایای دیگر این افزودنی پمپ شات کریت یا بتن پاششی این است که با افزودن این ماده از ایجاد ترک در بتن جلوگیری می شود. افزودنی شات کریت یا بتن پاششی فابیر که به پمپ شات کریت اضافه میشود از رشد ترک در بتن آب بتد شدن آن میشود.همچنین این مواد افزودنی مقاوم نفوذ پدیری شات کریت یا بتن پاششی در برابر ین کلر و کربوناسیون افزایش میدهد.

استفاده از مصالح جدید به جای فولاد در بتن مسلح

استفاده از مصالح جدید و به خصوص کامپوزیت‌ها به جای فولاد در دهه اخیر در دنیا به شدت مورد علاقه بوده است. کامپوزیت‌ها از یک ماده چسباننده (اکثراً اپوکسی) و مقدار مناسبی الیاف تشکیل یافته است. این الیاف ممکن است از نوع کربن، شیشه، آرامید و ... باشند، که کامپوزیت حاصله به ترتیب، به نامAFRP ،GFRP ،CFRP خوانده می‌شود. مهمترین حسن کامپوزیت‌ها، مقاومت بسیار عالی آنها در مقابل خوردگی است. به همین دلیل کاربرد کامپوزیت‌های FRP در بتن ‌آرمه به جای میلگردهای فولادی، بسیار مورد توجه قرار گرفته است. لازم به ذکر است که خوردگی میلگرد در بتن مسلح به فولاد به عنوان یک مسئله بسیار جدی تلقی می‌گردد. تاکنون بسیاری از سازه‌های بتن‌آرمه در اثر تماس و مجاورت با سولفاتها، کلرورها و سایر عوامل خورنده دچار آسیب جدی گردیده‌اند، چنانچه فولاد به کار رفته در بتن تحت تنش‌های بالاتر در شرایط بارهای سرویس قرار گیرند، این مسئله به مراتب بحرانی‌تر خواهد بود. یک سازه بتن‌آرمه معمولی که به میلگردهای فولادی مسلح است، چنانچه در زمان طولانی در مجاورت عوامل خورنده نظیر نمک‌ها، اسیدها و کلرورها قرار می‌گیرد، قسمتی از مقاومت خود را از دست خواهد داد. به علاوه فولادی که در داخل بتن زنگ می‌زند، بر بتن اطراف خود فشار آورده و باعث خرد شدن آن و ریختن پوسته بتن می‌گردد.

تاکنون تکنیک‌هایی جهت جلوگیری از خوردگی فولاد در بتن‌آرمه توسعه داده شده و به کار رفته است که در این ارتباط می‌توان به پوشش میلگردها توسط اپوکسی، تزریق پلیمر به سطح بتن و یا حفاظت کاتدیک اشاره نمود. با این وجود هر یک از این روش‌ها تا حدودی و فقط در بعضی از زمینه‌ها موفق بوده‌اند. به همین جهت به منظور حذف کامل خوردگی میلگردها، توجه محققین و متخصصین بتن‌ آرمه به حذف کامل فولاد و جایگزینی آن با مواد مقاوم در مقابل خوردگی معطوف گردیده است. در همین راستا کامپوزیت‌های FRP (پلاستیک‌های مسلح به الیاف) از آنجا که به شدت در محیط‌های نمکی و قلیایی در مقابل خوردگی مقاوم هستند، موضوع تحقیقات گسترده‌ای به عنوان یک جانشین مناسب برای فولاد در بتن‌آرمه، به خصوص در سازه‌های ساحلی و دریایی گردیده‌اند.

 

لازم به ذکر است که اگر چه مزیت اصلی میلگردهای از جنس FRP مقاومت آنها در مقابل خوردگی است، با این وجود خواص دیگر کامپوزیت‌های FRP نظیر مقاومت کششی بسیار زیاد (تا 7 برابر فولاد)، مدول الاستیسیته قابل قبول، وزن کم ، مقاومت خوب در مقابل خستگی و خزش، عایق بودن در مقابل امواج مغناطیسی و چسبندگی خوب با بتن، مجموعه‌ای از خواص مطلوب را تشکیل می‌دهد که به جذابیت کاربرد FRP در بتن ‌آرمه افزوده‌اند. اگر چه بعضی از مشکلات نظیر مشکلات مربوط به خم کردن آنها و نیز رفتار کاملاً خطی آنها تا نقطه شکست، مشکلاتی از نظر کاربرد آنها فراهم نموده‌اند که امروزه موضوع تحقیقات گسترده‌‌ای به عنوان یک جانشین مناسب برای فولاد در بتن‌آرمه، به خصوص در سازه‌های ساحلی و دریایی گردیده‌اند.

 

با توجه به آنچه که ذکر شد ، بسیار به جاست که در ارتباط با کاربرد کامپوزیت‌های FRP در بتن‌ سازه‌های ساحلی و دریایی مناطق جنوبی ایران و به خصوص منطقه خلیج‌فارس، تحقیقات گسترده‌ای صورت پذیرد. در همین راستا مناسب است که تحقیقات مناسبی بر انواع کامپوزیت‌های FRP (AFRP, CFRP, GFRP) و میزان مناسب بودن آنها برای سازه‌های دریایی که در منطقه خلیج‌ فارس احداث شده است، صورت پذیرد. این تحقیقات شامل پژوهش‌های گسترده تئوریک بر رفتار سازه‌های بتن‌آرمه متداول در مناطق دریایی (به شرط آنکه با کامپوزیت‌های FRP مسلح شده باشند) خواهد بود. در همین ارتباط لازم است کارهای تجربی مناسبی نیز بر رفتار خمشی، کششی و فشاری قطعات بتن‌آرمه مسلح به کامپوزیت‌های FRP صورت پذیرد.

 

لازم به ذکر است که چنین تحقیقاتی در 10 سال اخیر در دنیا صورت گرفته که نتیجه این تحقیقات منجمله آئین‌نامه ACI-440 است که در چند سال اخیر انتشار یافته است. با این وجود کامپوزیت‌های FRP در ایران کماکان ناشناخته باقی مانده است و به خصوص کاربرد آنها در بتن‌آرمه در سازه‌های ساحلی و دریایی کاملاً دور از چشم متخصصین و مهندسین ایرانی بوده است. تحقیقاتی که در این ارتباط صورت خواهد گرفت، می‌تواند منجر به تهیه دستورالعمل و یا حتی آئین‌نامه‌ای جهت کاربرد FRP در بتن‌آرمه به عنوان یک جسم مقاوم در مقابل خوردگی در سازه‌های بندری و دریایی ایران گردد. این حرکت می‌تواند فرهنگ کاربرد این ماده جدید در بتن ‌آرمه ایران را بنیان گذارد و از طرفی منجر به صرفه‌جویی‌ میلیاردها ریال سرمایه‌ای ‌شود که متأسفانه همه ساله در سازه‌های بتن‌ آرمه احداث شده در مناطق جنوبی ایران (به خصوص در مناطق بندری و دریایی)، به جهت خوردگی میلگردها و تخریب و انهدام سازه بتنی، به ‌هدر می‌رود.

 

منبع: مقاله نت - maghaleh.net