فتح الله شفیعی

مهندسین عمران روستای بردکوه

فتح الله شفیعی

مهندسین عمران روستای بردکوه

نکات اجرایی ساختمان

نکات اجرایی ساختمان

۱. برای اندازه گیری عملیات خاکی در متره و برآورد از واحد متر مکعب استفاده می شود.
۲. آجر خطائی ، آجری است که در اندازهای ۵×۲۵×۲۵ سانتیمتر در ساختمانهای قدیمی برای فرش کف حیاط و غیره بکار می رفت.
۳. چنانچه لازم باشد در امتداد دیواری با ارتفاع زیاد که در حال ساختن آن هستیم بعدا دیوار دیگری ساخته شود باید لاریز انجام دهیم.
۴. هرگاه ابتدا و انتهای یک دیوار در طول دیوار دیگری بهم متصل شود ، به آن دیوار در تلاقی گفته می شود.
۵. در ساختمانهای مسکونی (بدون زیرزمین)روی پی را معمولا بین ۳۰ تا ۵۰ سانتی متر از سطح زمین بالاتر می سازند که نام این دیوار کرسی چینی است.
۶. قوس دسته سبدی دارای زیبایی خاصی بوده و در کارهای معماری سنتی استفاده می شود.
۷. حداقل ارتفاع سرگیر در پله ۲ متر می باشد.
۸. ویژگیهای سقف چوبی :الف)قبلا عمل کلافکشی روی دیوار انجام می گیرد ب)عمل تراز کردن سقف در کلاف گذاری انجام می شود ج)فاصله دو تیر از ۵۰ سانتیمتر تجاوز نمی کند د)تیرها حتی الامکان هم قطر هستند.
۹. گچ بلانشه کندگیر بوده ولی دارای مقاومت زیاد مانند سیمان سفید است.
۱۰. به سیمان سفید رنگ معدنی اکسید کرم اضافه می کنند تا سیمان سبز به دست آید.
۱۱. سنگ جگری رنگ که سخت ، مقاوم و دارای رگه های سفید و در سنندج و خرم آباد فراوان است.
۱۲. دستگاه کمپکتور ، دستگاهی است که فقط سطوح را ویبره می کند ، زیر کار را آماده و سطح را زیر سازی می کند.
۱۳. عمل نصب صفحات فلزی (بیس پلیتها) در زمان ۴۸ ساعت بعد از بتن ریزی صورت می گیرد.
۱۴. زمانی که خاک (زمین) بسیار نرم بوده و مقاومت آن کمتر از یک کیلوگرم بر سانتیمتر مربع باشد از فونداسیون پی صفحه ای استفاده می گردد.
۱۵. قطر دایره بتون خمیری ، بر روی صفحه مخصوص آزمایش آب بتون ، حدود ۳۰ تا ۳۵ سانتیمتر می باشد.
۱۶. حدود درجه حرارت ذوب شدن خاک آجر نسوز ۱۶۰۰ درجه می باشد.
۱۷. نام آجری که از ضخامت نصف شده باشد ، آجر نیم لایی نامیده می شود.
۱۸. نام دیوارهای جداکننده و تقسیم پارتیشن نام دارد.
۱۹. عمل برداشتن خاک کف اطاق و ریختن و کوبیدن سنگ شکسته بجای آن را بلوکاژ می گویند.
۲۰. زمین غیر قابل تراکم هوموسی نامیده می شود.
۲۱. عمق پی های خارجی یک ساختمان در مناطق باران خیز حداقل ۵۰ سانتیمتر است.
۲۲. نام فضای موجود بین دو ردیف پله چشم نامیده می شود.
۲۳. در سقف های چوبی حداکثر فاصله دو تیر ۵۰ سانتیمتر است.
۲۴. سیمان نوع اول برای دیوارها و فونداسیونهای معمولی استفاده میگردد.
۲۵. اکسید آهن را برای تهیه سیمان قرمز رنگ ، با کلینگر سیمان سفید آسیاب می کنند.
۲۶. نام دیگر لوله های سیاه بدون درز مانسمان نام دارد.
۲۷. سریعترین و عملی ترین وسیله اجرای اتصالات ساختمان ،پلها و نظایر جوش می باشد.
۲۸. حاقل درجه حرارت برای بتن ریزی ۱۰ درجه می باشد.
۲۹. ضخامت اندود سقف با ملات گچ و خاک باید بین ۱ تا ۲ سانتیمتر باشد.
۳۰. اندود زیر قیروگونی ، ماسه سیمان است.
۳۱. چنانچه گودبرداری از سطح زمین همسایه پائین تر باشد ، حداکثر فاصله شمعها ۵/۲ متر می باشد.
۳۲. در پی کنی های کم عمق در زمین های ماسه ای حدود زاویه شیب ۳۰ تا ۳۷ درصد می باشد.
۳۳. برای ایجاد مقاومت مناسب در طاق ضریس حداقل خیز قوس باید ۳ سانتیمتر باشد.
۳۴. لوله های مانسمان سیاه و بدون درز ، گاز رسانی
۳۵. در بتون ریزی دیوارها و سقفها ، صفحات قالبی فلزی مناسب ترند.
۳۶. از اسکدیپر برای خاکبرداری ، حمل ، تخلیه و پخش مواد خاکی استفاده می گردد.
۳۷. اتصال ستون به فونداسیون به وسیله ستکا انجام می گیرد.
۳۸. برای لوله کشی فاضلاب یهتر است از لوله چدنی استفاده گردد.
۳۹. پر کردن دو یا سه لانه از تیرآهن لانه زنبوری در محل تکیه گاهها جهت ازدیاد مقاومت برشی است.
۴۰. بهترین و با استفاده ترین اتصالات در اسکلت فلزی از نظر استحکام و یک پارچگی اتصالات با جوش است.
۴۱. ارتفاع کف داربست جهت اجرای طاق ضربی تا زیر تیرآهن سقف برابر است با قدبنا+پنج سانتیمتر.
۴۲. در ساختمانهای مسکونی کوچک (یک یا دو طبقه) قطر داخلی لوله های گالوانیزه برای آب رسانی باید ۲/۱ اینچ باشد.
۴۳. وجود سولفات سدیم،پتاسیم و منیزیم محلول در آب پس از ترکیب با آلومینات کلسیم و سنگ آهک موجود در سیمان سبب کم شدن مقاومت بتون می گردد.
۴۴. زمان نصب صفحات بیس پلیت معمولا باید ۴۸ ساعت پس از بتون ریزی فونداسیون انجام شود.
۴۵. برای ساخت بادبند بهتر است از نبشی ، تسمه ، ناودانی و میلگرد استفاده گردد.
۴۶. هدف از شناژبندی کلاف نمودن پی های بنا به یکدیگر و مقاومت در برابر زلزله می باشد.
۴۷. سقفهای کاذب معمولا حدود ۳۰ تا ۵۰ سانتیمتر پایین تر از سقف اصلی قرار می گیرد.
۴۸. قلاب انتهایی در میلگردهای یک پوتربتونی برای عامل پیوند بیشتر آرماتور در بتون می باشد.
۴۹. حد فاصل بین کف پنجره تا کف اطاق را دست انداز پنجره میگویند.
۵۰. در ساخت کفراژ ستونها ، قالب اصلی ستون بوسیله چوب چهارتراش مهار می گردد.
۵۱. طول پله عبارت است از جمع کف پله های حساب شده با احتساب یک کف پله بیشتر.
۵۲. آجر جوش بیشتر در فونداسیون مورد استفاده قرار می گیرد.
۵۳. اثر زنگ زدگی در آهن با افزایش قلیایت در فلز نسبت مستقیم دارد.
۵۴. از امتیازات آجر لعابی صاف بودن سطوح آن ، زیبایی نما ، جلوگیری از نفوز آب می باشد.
۵۵. در کوره های آجرپزی بین خشتها صفحه کاغذی قرار می دهند.
۵۶. بهترین نمونه قطعات کششی ضلع تحتانی خرپاها می باشد.
۵۷. تیرهای بتن آرمه، خاموتها(کمربندها) نیروی برشی را خنثی می کنند.
۵۸. چسبندگی بتون و فولاد بستگی به اینکه آرماتورهای داخل بتون زنگ زده نباشد.
۵۹. شیره یا کف بتون زمانی رو می زند که توسط ویبره کردن هوای آزاد داخل بتون از آن خارج شده باشد.
۶۰. آلوئک در اثر وجود دانه های سنگ آهن در خشت خام در آجرها پدیدار می گردد.
۶۱. خشک کردن چوب به معنی گرفتن شیره آن است.
۶۲. لغاز به معنی پیش آمدگی قسمتی از دیوار.
۶۳. مقدار کربن در چدن بیشتر از سرب است.
۶۴. لوله های آب توسط آهک خیلی زود پوسیده می شود.
۶۵. آجر سفید و بهمنی در نمای ساختمان بیشترین کاربرد را دارد.
۶۶. آجر خوب آجری است که در موقع ضربه زدن صدای زنگ بدهد.
۶۷. لاریز یعنی ادامه بعدی دیوار بصورت پله پله اتمام پذیرد.
۶۸. کرم بندی همیشه قیل از شروع اندود کاری گچ و خاک انجام می گیرد.
۶۹. برای خم کردن میلگرد تا قطر ۱۲ میلیمتر از آچار استفاده می گردد.
۷۰. اسپریس یعنی پاشیدن ماسه و سیمان روان و شل روی دیوار بتونی.
۷۱. برای دیرگیری گچ ساختمانی از پودر آهک شکفته استفاده می گردد.
۷۲. مشتو یعنی ایجاد سوراخهائی در سطح خارجی دیوارها جهت ساختن داربست.
۷۳. بتون معمولا پس از ۲۸ روز حداکثر مقاومت خود را به دست می آورد.
۷۴. پیوند هلندی از اختلاط پیوندهای کله راسته و بلوکی شکل می گیرد.
۷۵. وجود بند برشی در پیوند مقاومت دیوار را ضعیف می کند.
۷۶. کاملترین پیوند از نظر مقاومت در مقابل بارهای فشاری وارده پیوند بلوکی می باشد.
۷۷. قپان کردن در اصطلاح یعنی شاقولی نمودن نبش دیواره.
۷۸. خط تراز در ساختمان برای اندازه برداریهای بعدی و مکرر در ساختمان است.
۷۹. ضخامت و قطر کرسی چینی در ساختمانها بیشتر از دیوارهاست.
۸۰. پارتیشن میتواند از جنس

مراحل ساخت فنداسیون ساختمان های اسکلت فلزی

****   مراحل ساخت فنداسیون ساختمان های اسکلت فلزی

نکات اجرایی زیر سازی پی :

فرض کنید یک پروژه اسکلت فلزی را بخواهیم به اجرا در آوریم ، مراحل اولیه  اجرایی شامل ساخت پی مناسب است که در کلیه پروژه ها تقریبا یکسان اجرا می شود، اما قبل از شرح مختصر مراحل ساخت پی ، باید توجه داشت که ابتدا نقشه فنداسیون را روی زمین پیاده کرد و برای پیاده کردن دقیق آن بایستی جزئیات لازم در

نقشه مشخص گردیده باشد. از جمله سازه به شکل یک شیکه متشکل از محورهای عمود بر هم تقسیم شده باشد و موقعیت محورهای مزبور نسبت به محورها یا نقاط مشخصی نظیر محور جاده ، بر زمین بر ساختمان مجاور و غیره تعیین شده باشد.( معمولا محورهای یک امتداد با اعداد 3،2،1و... شماره گذاری می شوند و محورهای امتداد دیگر با حروف  C-B-A و ... مشخص می گردند. همچنین باید توجه داشت ستونها و فنداسیونهایی را که وضعیت مشابهی از نظر بار وارد شده دارند ، با علامت یکسان نشان می دهند : ستون را با حرف C  و فنداسیون را با حرف F نشان میدهند . ترسیم مقاطع و نوشتن رقوم زیر فنداسیون ، رقوم روی فنداسیون ، ارتفاع قسمت های محتلف پی ، مشخصات بتن مگر ، مشخصات بتن ، نوع و قطر کلی که برای بریدن

میلگرد ها مورد نیاز است باید در نقشه مشخص باشد. قبل از پیاده کردن نقشه روی زمین اگر زمین ناهموار بود یا دارای گیاهان و درختان باشد ، باید نقاط مرتفع ناترازی که مورد نظر است برداشته شود و محوطه از کلیه گیاهان و ریشه ها پاک گردد.سپس شمال جغرافیایی نقشه را با جهت شمال جغرافیایی محلی که قرار است پروژه در آن اجرا شود منطبق می کنیم ( به این کار توجیه نقشه می گویند) پس از این کار ، یکی از محورها را (محور طولی یا عرضی ) که موقیعت آن روی نقشه مشخص شده است ، بر روی زمین ، حداقل با دو میخ در ابتدا و انتها ،

پیاده می کنیم که به این امتداد محور مبنا گفته می شود ؛ حال سایر محورهای طولی و عرضی را از روی محور مبنا مشخص می کنیم ( بوسیله میخ چوبی یا فلزی روی زمین ) که با دوربین تئودولیت و برای کارهای کوچک با ریسمان کار و متر و گونیا و شاغول اجرا می شود. حال اگر بخواهیم محل فنداسیون را خاکبرداری کنیم

به ارتفاع خاکبرداری احتیاج داریم که حتی اگر زمین دارای پستی و بلندی جزئی باشد نقطه ای که بصورت مبنا (B.M) باید در محوطه کارگاه مشخص شود ( این نقطه بوسیله بتن و میلگرد در نقطه ای که دور از آسیب باشد ساخته می شود). نکات فنی و اجرایی مربوط به خاکبرداری: داشتن اطلاعات اولیه از زمین و نوع خاک از قبیل : مقاومت فشاری نوع خاک بویژه از نظر ریزشی بودن ، وضعیت آب زیر زمینی ، عمق یخبندان و سایر ویژگیهای فیزیکی خاک که با آزمایش از خاک آن محل مشخص می شود ، بسیار ضروری است. در خاکبرداری پی هنگام اجرا زیر زمین ممکن است جداره ریزش کند یا اینکه زیر پی مجاور خالی شود که با وسایل مختلفی باید

شمع بندی و حفاظت جداره صورت گیرد ؛ به طوری که مقاومت کافی در برابر بارهای وارده داشته باشد یکی از راه حلهای جلوگیری از ریزش خاک و پی ساختمان مجاور، اجرای جز به جز است  که ابتدا محل فنداسیون ستونها اجرا شود و در مرحله بعدی، پس از حفاری تدریجی ، اجزای دیگر دیوار سازی انجام گیرد.

نکات فنی و اجرایی مربوط به خاکریزی و زیر سازی فنداسیون :

 

 

 

 چاههای متروکه با شفته مناسب پر می شوند و در صورت برخورد محل با قنات متروکه ، باید از پی مرکب یا پی تخت استفاده کرد یا روی قنات را با دال بتن محافظ پوشاند. از خاکهای نباتی برای خاکریزی نباید استفاده کرد . ضخامت قشرهای خاکریز برای انجام تراکم 15 تا 20 سانتیمتر است . برای انجام تراکم باید مقداری آب به خاک

اضافه کنیم و با غلتکهای مناسب آن را متراکم نمایی ، البته خاکریزی و تراکم فقط برای محوطه سازی و کف سازی است و خاکریزی زیر فنداسیون مجاز نمی باشد. در برخی موارد ، برای حفظ زیر بتن مگر ، ناچار به زیر سازی فنداسیون هستیم ، اما ممکن است ضخامت زیر  سازی  کم باشد ( حدود 30 سانتیمتر ) در این صورت می توان با افزایش ضخامت بتن مگر زیر سازی را انجام داد و در صورت زیاد بودن ارتفاع زیر سازی ، می توان با حفظ اصول فنی لاشه چینی سنگ با ملات ماسه سیمان انجام داد.

بتن مگر چیست؟

بتن با عیار کم سیمان زیر فنداسیون که بتن نظافت نیز نامیده می شود معمولا به ضخامت 10 تا 15 سانتیمتر و از هر طرف 10 تا 15 سانتیمتر بزرگتر از خود فنداسیون ریخته میشود.

قالب بندی فنداسیون چگونه است؟

قالب بندی باید از تخته سالم بدون گره به ضخامت حداقل 5 . 2 سانتیمتر یا ورقه های فلزی صاف یا از قالب آجری (تیغه 11 سانتیمتری آجری یا 22 با اندود ماسه سیمان برای جلوگیری از خروج شیره بتن ) صورت گیرد. لازم به یادآوری است که پی های عادی می توان با قرار دادن ورقه پلاستیکی ( نایلون) در جداره خاکبرداری از آن به عنوان قالب استفاده کرد.

تذکر: در آرماتور بندی فاصله میله گردها تا سطح آزاد بتن در مورد فنداسیون نباید از 4 سانتیمتر کمتر باشد.

****  چگونگی اجراء و نصب پیچهای مهاری ( بولت) و صفحه کف ستونی (Baseplate) :

ابتدا دلایل استفاده از صفحه کف ستونی و بولت را توضیح می دهم :

ستونهای یک ساختمان اسکلت فلزی ، نقش انتقال دهنده بارهای وارد شده را به فنداسیون (به صورت نیروی فشاری ، کششی ، برشی یا لنگر خمشی) به عهده دارند.

در این میان ، ستون فلزی با صفحه ای  فلزی که از یک سو با ستون و از سوی دیگر با بتن درگیر شده است روی فنداسیون قرار می گیرد. توجه به اینکه ستون فلزی به علت مقاومت بسیار زیاد تنشهای بزرگی را تحمل می کند و بتن قابلیت تحمل این تنشها را ندارد ؛ بنابراین صفحه ستون واسطه ای است که ضمن افزایش سطح تماس ستون با پی ، سبب می گردد توزیع نیروهای ستون در خد قابل تحمل برای بتن باشد.

کار اتصال صفحه زیر ستونی با بتن بوسیله میله مهار (بولت Bolt) صورت می گیرد و برای ایجاد اتصال ، انتهای آن را خم می کنیم و مقدار طول بولت را محاسبه تعیین می کند. تعداد بولت ها بسته به نوع کار از دو عدد به بالا تغییر می کند، حداقل قطر این میله های مهاری میلگرد نمره 20 است ؛ در حالی که صفحه تنها فشار را تحمل می کنر ، بولت نقش عمده ای ندارد و تنها پایه را در محل خود ثابت نگه می دارد . نکته مهم هنگام نصب ستون بر روی صفحه تقسیم فشار این است که حتما انتهای ستون سنگ خورده و صاف باشد تا تمام نقاط مقطع ستون بر روی صفحه بیس پلیت بنشیند و عمل انتقال نیرو بخوبی انجام پذیرد . از آنجا که علاوه بر فشار ، لنگر نیز بر

 

 

صفحه زیر ستونی وارد می شود ، طول بولت باید به علاوه بر فشار ، لنگر نیز بر صفحه زیر ستونی وارد می شود ، طول بولت باید به اندازه ای باشد که کشش وارد شده را تحمل  نماید که این امر با محاسبه تعیین خواهد شد.

انواع اتصال ستون به شالوده :

جزئیات اتصال ستون فلزی به شالوده بتنی به نیروی موجود در پای ستون بستگی دارد . در ستون با انتهای مفصلی فقط نیروی فشاری و برشی از ستون به شالوده منتقل می شوند. اگر بخواهیم لنگر خمشی را نیز به شالوده منتقل نماییم ، در ان صورت ، نیاز به طرح اتصال مناسب برای این کار خواهیم داشت که اتصال گیردار خوانده می شود.

روش نصب پیچهای مهاری  :

به طور کلی ، دو روش برای نصب پیچهای مهاری وجود دارد :

الف) نصب پیچهای مهاری در موقع بتن ریزی  شالوده ها : در این روش  ، پیچها را در محلهای تعیین شده قرار می دهند و موقیعت آنها را به وسیله مناسبی تثبیت می کنند ؛ سپس اطرافشان را با بتن می پوشانند . روشهای گوناگونی برای تثبیت پیچهای مهاری در محل خود وجود دارد که صورت زیر توضیح خواهم داد :

روش اول : ابتدا بوسیله صفحه ای نازک مشابه با ورق کف ستونی که شابلن یا الگو نامیده می شود . قسمت فوقانی بولت و قسمت پایین را بوسیله نبشی به یکدیگر می بندیم تا مجموعه ای بدون تغییر شکل به دست آید ؛ آن گاه محورهای طولی و عرضی صفحه الگو را با مداد رنگی ( گچ و یا رنگ) مشخص می کنیم ؛ سپس بوسیله ریسمان کار یا دوربیت تئودولیت با میخهای کنترول محور کلی فنداسیون را در جهتهای طولی و عرضی به دست می آوریم و به کمک شخصی با تجربه در موقیعت مناسب آن قرار می دهیم. ( محور طولی و عرضی صفحه شابلن بر محور طولی و عرضی کلی فنداسیون منطبق می شود و در ارتفاع صحیح و به صورت کاملا تراز نصب می گردد.) سپس به وسیله قطعات آرماتور آن را به میلگردهای شبکه آرماتور فنداسیون یا به قطعات ورقی (که در بتن قرارداده اند )  جوش (منتاژ) داده می شود ؛ به گونه ای که هنگام بتن ریزی ، صفحه از جای خود حرکتی نداشته باشد. باید دقت داشته باشیم که در موقع بتن ریزی ، هوا در زیر صفحه شابلن ، محبوس نسود . برای این منظور، معمولا سوراخ بزرگی در وسط شابلن تعبیه می کنند که وقتی بتن از اطراف زیر صفحه را پر می کند ، هوا از راه سوراخ خارج گردد و با بیرون زدن بتن از وسط صفحه ، از پر شدن کامل زیر آن اطمینان حاصل شود.

روش دوم : صفحه تقسیم فشار پیش از بتن ریزی پی به طور دقیق در محل خود قرار می گیرد و بوسیله آن بولت ها در جای خود ثابت می شوند . پس از بتن ریزی ، صفحه را از جای خود خارج می کنند و در کارگاه به طور مستقیم به پای ستون متصل می نمایند و پس از نصب ستون به همراه صفحه مهذه ها را محکم می بندند. در این حالت ، هر صفحه ای باید کاملا علامت گذاری شود تا هنگام نصب اشتباهی رخ ندهد.

روش سوم : صفحه را قدری بالاتر از محل اصلی خود نگه می دارند تا محل میله های مهار به طور دقیق تعیین شود ؛ سپس میله مهارها را ثابت می کنند و عمل بتن ریزی را انجام می دهند ؛ در حالی که صفحه هنوز در جای خود ثابت است . پس از پایان یافتن بتن ریزی صفحه را در تراز مورد نظر نگه می دارند . این عمل را می توان به وسیله مهره های فلزی در زیر صفحه ای که میله مهارها از درون آنها عبور کرده اند با پیچتندن و تنظیم آنها تا تراز لازم انجام داد. سپس فاصله های بین دو صفحه و روی بتن پی با ملات ماسه شسته و سیمان به نسبت یک حجم سیمان به دو حجم ماسه کاملا پر می گردد یا از ماسه سیمان نرم (گروت) استفاده می گردد.

 

ب) نصب پیچهای مهاری پس از بتن ریزی شالوده : در این روش ، در محل پیچهای مهاری به وسیله قالب در داخل بتن فضای خالی ایجاد می کنند که این قالب جعبه نامیده می شود  . میلگردی در بتن قرار می دهیم  ، پس از گرفتن و سخت شدن بتن شالوده ، جعبه را از محل خود خارج می کنیم ؛ سپس پیچ مهاری را در محل خود درگیر با آرماتور قرار می دهیم و تنظیم می کنیم و اطراف آن را با بتن ریزدانه ( با حفظ اصول بتن ریزی) پر می کنیم . لازم به یادآوری است جعبه ای که برای ایجاد فضای خالی لازم برای نصب پیچ مهاری به کار می رود ، باید چنان طرح ریزی و ساخته شده باشد که به سادگی و در حد امکان ، بدون ضربه زدن ، شکستن و خرد کردن از داخل بتن خارج شود. برای این منظور می توان از جعبه هایی که قطعات آنها به صورت کام و زبانه متصل می شوند یا از جعبه های لولایی و سایر اقسام جعبه ها استفاده کرد . در مواردی که از پیچهای مهاری با قلاب انتهایی و رکاب یا از پیچهای مهاری با انتهای کلنگی استفاده می شود . برای سزعت بخشیدن به کار ، از جعبه های ساخته شده یا ورقهای فولادی که در درون بتن باقی می مانند، استفاده می شود . باید توجه داشت که این شیوه کار بیشتر برای فنداسیون ماشین آلات صنعتی در کارخانجات کاربرد دارند . لازم به ذکر است در بعضی مواقع برای اتصال کف ستون به شالوده ، به جای پیچهای مهاری از میلگردها یا تسمه هایی استفاده می کنند که به ورق کف ستون جوش داده می شوند که به این صورت می باشد که معمولا در موقع بتن ریزی ، مجموع ورق کف ستونها و مهارها را در شالوده کار می گذارند ، پس از گرفتن و سخت شدن بتن ، ستون را روی ورق کف ستون قرار می دهند و جوشکاری می کنند.

محافظت کف ستونها و پیچهای مهاری ( مهره و حدیده ):

کف ستون ها از جمله قطعات ساختمانی هستند که اغلب در معرض اثر شدید رطوبت قرار دارند و باید به نحو مطلوب حفاظت شوند . در ساختمانهای معمولی و به طور کلی در ساختمانهایی که پس از پایان یافتن کار اسکلت فلزی دیگر نیازی به بازدید و تنظیم کف ستونها نیست ، اطراف کف ستون را با بتن پر می کنند و در صورتی که قبل از بتن ریزی سطوح فولادی خوب تمیز شده و کا جوش یا زغال جوش برداشته شده باشد ، بتن به فولاد می چسبد و آن را کاملا محافظت می کند . در بعضی دیگر از ساختمانها ، کف ستونها را نظیر سایر قطعات به وسیله رنگ محافظت می کنند  . در ساختمانهای صنعتی که امکان باز کردن و نصب مجدد آنها وجود دارد، با مواد قیری مخلوط با ماسه نرم از کف ستون ها حفاظت می شود ؛ همچنین برای تمیز ماندن حدیدهای پیچهای مهاری و دوری از آسیب دیدگی باید قبل از بتن ریزی فنداسیون ، قسمت حدیدها به وسیله پلاستیک یا گونی یا سیم مناسب بسته شده ، پوشش مناسب صورت گیرد .

****  جزئیات و نکات اجرایی ستونها به صورت مختصر:

تعریف ستون فلزی :

ستون عضوی است که معمولا به صورت عمودی در ساختمان نصب می شود و یارهای کف ناشی از طبقات به وسیله تیر و شاهتیر به آن منتقل می گردد و سپس به به زمین انتقال می یابد.

شکل ستونها :

شکل سطح مقطع ستونها معمولا به مقدار و وضعیت بار وارد شده بستگی دارد. برای ساختن ستونهای فلزی از انواع پروفیلها و ورقها استفاده می شود.عموما ستونها از لحاظ شکل ظاهری به دو گروه تقسیم می شوند:

 

1-  نیمرخ (پروفیل) نورد شده شامل انواع تیرآهنها و قوطیها : بهترین پروفیل نورد شده برای ستون ، تیرآهن با پهن یا قوطیهای مربع شکل است؛ زیرا از نظر مقاومت بهتر از مقاطع دیگر عمل می کند.ضمن اینکه در بیشتر مواقع عمل اتصالات تیرها به راحتی روی آنها انجام می گیرد.

2-  مقاطع مرکب : هرگاه سطح مقطع و مشخصات یک نیمرخ (پروفیل ) به تنهایی برای ایستایی ( تحمل بار وارد شده و لنگر احتمالی ) یک ستون کافی نباشد ، از اتصال چند پروفیل به یکدیگر ، ستون مناسب آن (مقاطع مرکب ) ساخته می شود.

چگونگی ساخت ستون (مقاطع مرکب):

ستونها ممکن است بر حسب نیاز با ترکیب و اتصالات متنوع از انواع پروفیلهای مختلف ساخته شوند ، اما رایجترین اتصال برای ساخت ستونها سه نوع است :

1-   اتصال دو پروفیل به یکدیگر به طریقه دوبله کردن : ابتدا دو تیرآهن را در کنار یکدیگر و بر روی سطح صاف به هم چسبیده گردند ؛ سپس دو سر و وسط ستون را جوش داده و ستون برگردانده شده و مانند قبل جوشکاری صورت می گیرد ؛ آن گاه ستون معکوس و در قسمت وسط ، جوشکاری می شود . همین کار را در سوی دیگر ستون انجام می دهند و به ترتیب جوشکاری ادامه می یابد تا جوش مورد نیاز ستون تامین گردد. این شیوه جوشکاری برای جلوگیری از پیچش ستون در اثر حرارت زیاد جوشکازی ممتد می باشد . در صورتیکه در سرتاسز ستون به جوش نیازی نباشد ، دست کم جوشها باید به این ترتیب اجرا گردد :

الف) حداکثر فاصله بین طولهای جوش در طول ستون به صورت غیر ممتد از 60 سانتیمتر تجاوز نکند.

ب) طول جوش ابتدایی و انتهایی ستون باید برابر بزرگترین عرض مقطع باشد و به طور یکسره انجام گیرد.

ج) طول موثر هر قطعه از جوش منقطع نباید از 4 برابر بعد جوش یا 40 میلیمتر کمتر باشد.

د) تماس میان بدنه دو پروفیل نباید از یک شکاف 5/1 میلیمتری بیشتر ، اما از 6 میلیمتر کمتر باسد ؛ ضمنا بررسیهای فنی نشان دهد مه مساحت کافی برای تماس وجود ندارد ؛ در آن صورت ، این بادخور باید با مصالح پر کننده مناسب شامل تیغه های فولادی با ضخامت ثابت پر شود.

2-  اتصال دو پروفیل با یک ورق سراسری روی بالها : در مقاطع مرکبی که ورق اتصال بر روی دو نیمرخ متصل می شود تا مقاطع مرکب تشکیل بدهد ؛ فاصله جوشهای مقطع (غیر ممتد) که ورق را به نیمرخها متصل می کند ، نباید از 30 سانتیمتر بیشتر شود . اندازه حداکثر فاصله فوق الذکر در مورد فولاد معمولی به صورت t22 که  t در آن ضخامت ورق است در می آید.

3- اتصال دو پروفیل با بستهای فلزی (تسمه) : متداولترین نوع ستون در ایران ستونهای مرکبی است که دو تیرآهن به فاصله معین از یکدیگر قرار می گیرد و قیدهای افقی یا چپ و راست این دو نیمرخ را به هم متصل می کند ؛ البته بستهای چپ و راست که شکلهای مثلثی را به وجود می آورند ، دارای مقاومت بهتری نسبت به قیدهای موازی می باشند.در مورد اینگونه ستونها ، بویژه ستون با قید موازی مسائل زیر را بایستی رعایت کرد :

الف) ابعاد بست (وصله ) افقی ستون کمتر از این مقادیر نباشد:

L : طول وصله حداقل به فاصله مرکز تا مرکز دو نیمرخ باشد .

B : عرض وصله از 42 درصد طول آن کمتر نباشد .

 

T : ضخامت وصله از 35/1 طول آن کمتر نباشد.

ب) در اطراف کلیه وصله ها و در سطح تماس با بال نیمرخها عمل جوشکاری انجام گیرد (مجموع طول خط جوش در هر طرف صفحه نباید از طول صفحه کمتر شود) .

ج) فاصله قیدها و ابعاد  آن بر اساس محاسبات فنی تعیین می شود.

د) در قسمت انتهایی ستون ، باید حتما از ورق با طول حداقل برابر عرض ستون استفاده کرد تا علاوه بر تقویت پایه  ، محل مناسبی برای اتصال بادبندها به ستون به وجود آید.

ه) در محل اتصال تیر یا پل به ستون لازم است قبلا ورق تقویتی به ابعاد کافی روی بالهای ستون جوش شده باشد.

روش نصب نبشی بر روی کف ستونها (بیس پلیت) برای استقرار ستون هنگام محاسبه ابعاد کف ستونها باید حداقل فاصله میله مهاری از لبه کف ستون و محل جاگذاری نبشی با ضخامت جوش لازم برای نگه داشتن ستون ، همچنین ضخامت پلیت انتهایی ستون و ابعاد ستون را با دقت بررسی کرد ؛ سپس با توجه به موارد یاد شده ، به نصب نبشی و استقرار ستون به این صورت اقدام نمود . بر روی بیس پلیت ها محل کف ستون و محل آکس را کنترل می کنیم ؛ سپس نبشیهای اتصال را به صورت عمود بر هم بر روی بیس پلیت جوش داده ، آنگاه ستون را مستقر و اقدام به نصب دگر نبشیهای لازم کرده و آنها را به بیس پلیت جوش می دهیم . از مزایای عمود بر هم بودن دو نبشی روی بیس پلیت علاوه بر سرعت عمل و استقرار بهتر به علت تماس مستقیم ستون به بال نبشی ، اتصال جوشکاری به گونه ای درست تر و اصولی تر صورت می گیرد . روشن است که قبل از جوشکاری باید ستونها را هم محور و قائم نموده و عمود بودن در دو جهت کنترل گردد . پس از نصب ستونها با توجه به ارتفاع ستون و آزاد بودن سر ستون ممکن است تا زمان نصب پلها ، ستونها در اثر شدت باد و وزن خود حرکتهایی داشته باشند که احتمالا تاثیر نا مطلوب و ایجاد ضعف در جوشکاری و اتصالات کف ستونها خواهد داشت . به این سبب ، باید پس از نصب ، فورا به مهاربندی موقت ستونها به وسیله میلگرد یا نبشی بصورت ضربدری اقدام کرد.

طویل کردن ستونها :

سازهای فلزی را اغلب در چندین طبقه احداث می کنند ، طول پروفیلها برای ساخت ستون محدود است . با در نظر گرفتن بار وارده و دهانه بین ستونها و نحوه قرار گرفتن ستونهای کناری ، مقاطع مختلفی برای ساخت ستونها به دست می اید. ممکن است در هر طبقه ، ابعاد مقطع ستون با طبقه دیگر تفاوت داشته باشد ؛ بنابراین، باید اتصال مقاطع با ابعاد مختلف برای طویل کردن با دقت زیادی انجام شود . محل مناسب برای وصله ستونها به هنگام طویل کردن آنها حداقل در ازتفاع 45 تا60 سانتی متر بالاتر از کف هر طبقه یا 6/1 ارتفاع طبقه می باشد. این ارتفاع اندازه حداقلی است که از نظر دسترسی به محل اجرای جوش و نصب اتصالات مورد نیاز برای ادامه ستون یا اتصال بادبند لازم است.

نحوه طویل کردن ستونها :

ابتدا سطح تماس دو ستون را به خوبی گونیا می کنند و با سنگ زدن صاف می نمایند تا کاملا در تماس با یکدیگر یا صفحه وصله قرار گیرد . در صورتی که پروفیل دو ستون یکسان نباسد ، باید اختلاف دو نمره ستون را با گذاردن صفحات لقمه (هم سو کننده) بر ستون فوقانی را پر نمود ؛ سپس صفحه وصله را نصب کرد و جوش

 

لازم لازم را انجام داد . اگر ابعاد مقطع دو نیمرخ که به یکدیگر متصل می شوند ، تفاوت زیاد داشته باشند ، به طوری که قسمت بزرگی از سطح آن دو در تماس با یکدیگر قرار نگیرد ، در این صورت باید یک صفحه تقسیم فشار افقی بین دو نیمرخ به کار برد . این صفحه معمولا باید ضخیم انتخاب شود تا بتواند بدون تغییر شکل زیاد ، عمل تقسیم فشار را انجام دهد. کلیه ابعاد و ضخامت صفحه و مقدار جوش لازم را باید طبق محاسبه و بر اساس نقشه های اجرایی انجام داد.

ستونها با مقاطع دایره ای :

معمولا مقاطع  لوله ای (دایره ای ) از قطر 2 تا 12 اینچ برای ستونها بیشتر مورد استفاده قرار می گیرند. مقطع لوله در مواقعی که بوسیله اتصال جوش باشد ، آسانتر به کار می رود . کاربرد لوله بیشتر در پایه های بعضی منابع هوایی ، دکلهای مختلف و خرپاهای سبک است . این مقطعها به طور کلی مقاومترند ، برای اینکه ممان انرسی انها در تمام جهات یکسان است . با تغییر ضخامت مقاطع لوله ای می توان اینرسی های مختلف را به دست آورد.

انحراف مجاز پس از نصب ستون :

همان طور که گفتم  ، ستونها باید کاملا شاغول بوده و علاوه بر آن ، از محور کلی که در نقشه آکس بندی مشخص شده است ، نباید انحرافی بیش از آنچه در آیین نامه ها تعیین سده داشته باشد. در این جدول میزان انحراف مجاز ستونها در هنگام نصب ، مشخص گردیده است :

قطعه ساختمانی

حداکثر انحراف

ستون با ارتفاع h انحراف موقعیت مکانی

محور ستون از محور انتخاب شده

آن در سطح اتکای ستون

................................................................    5 - +

انحراف محور ستون در انتهای فوقانی آن از خط شاغول.................   25- +

<=1000/H

انحراف از خط شاغول در اثر خم شدن ستون (شکم دادن)............... 15- +

<=1000/H

 

**** شرح مختصری از شاهتیرها و تیرهای پوششی

شاهتیرها ( پلها) :

شاهتیرها عضوهای فلزی افقی اصلی هستند که با اتصالات لازم به ستونها متصل می شوند و به وسیله آنها بار طبقات به ستونها انتقال می یابد. شاهتیرهای فلزی ممکن است به صورتهای زیر به کار روند :

الف) تیرهای معمولی بصورت تک یا دوبله

ب ) تیرآهن بال پهن

ج ) تیرآهن معمولی با ورق تقویتی روی بالها و یا بال و جان

 

د ) پلهای لانه زنبوری از تیرآهن معمولی یا تیرهای بال پهن که بصورت مفصل در این مقاله توضیح خواهم داد

ه ) تیر ورق (گیردار) ترکیب تیرآهن معمولی با ورق یا تیرآهن بال پهن با ورق و یا از ترکیب ورقها درست می شود

و ) خرپاها

ساخت پلها و شاهتیرها : هرگاه در شاهتیرهای فلزی به جای تیر تکی از تیرهای دوبله استفاده شود ، باید دو تیر در محل بالها به یکدیگر به گونه ای مطلوب اتصال داشته باشند . چنانچه پلها (شاهتیرها ) برای لنگر خمشی موجود کفاف ندهد، آنها را با اضافه کردن تسمه یا ورق تقویت می نمایند . در مورد ورق تقویتی در تیرهای معمولی باید نکات زیر را رعایت کرد :

1 ) حداکثر ضخامت ورق تقویتی 8/0 ضخامت بال تیر باشد .

2 ) ورقهای تقویتی به طول کامل با بالها تماس و اتصال داشته باشد.

3 ) ضخامت جوش 75/0 ضخامت ورق باشد.

4 ) ورق تقویتی از هر دو طرف و در قسمت عرض نیز جوش گردد.

پلهای مرکب :

در بارهای سنگین و احتمالا دهانه زیاد که پروفیل استاندارد موجود در بازار کافی یا اقتصادی نباشد ، همچنین مقطع نیر لانه زنبوری که با تسمه یا ورق تقویت شده است ، برای بار وارد شده و دهانه خمش کافی نباشد ، از تیرهای مرکب استفاده می شود که تیر مرکب در چندین حالت استفاده می شود :

1 ) تیر مرکبی که از بریدن پروفیلهای معمولی ایرانی از وسط جان تیر و اتصال صفحه و ورق مناسب به دو قسمت بریده شده ساخته می شود . این روش برای پروفیلهای نمره 20 به بالا اقتصادی خواهد بود .

2 ) تیر مرکبی که از سه صفحه ( قطعات تقویتی ) تشکیل می شود. در این حالت ، در پروفیلهای معمولی از فولاد جان تیر نسبت به فولاد بالها برای مقابله با خمش چندان استفاده نمی شود ، بلکه سعی می گردد ، حتی المکان ، جان تیر را نازکتر و ارتفاع آن را زیاد کنند.

اتصالات ساده تیر به ستون و شاهتیر :

این اتصالات بر دو نوع است :

1 ) اتصال با جفت نبشی جان : معمولا دو عدد نبشی را در کارخانه به جان تیر جوش می دهند . جوشهای بین نبشی و ستون یا شاهتیر را در کارگاه در روی کار انجام می دهند . معمولا نبشیهای اتصال را به اندازه 10 تا 12 میلیمتر از

انتهای جان تیر فاصله آزاد می گذارند تا اگر تیر در حدود رواداریهای مجاز بلند باشد ، بدون بریدن سر آن و تنها با جابه جا کردن نبشی آن را نصب کنند.

2 ) اتصال با نبشی نشیمن : این نوع اتصال را در عکس العملهای نسبتا کوچک تا حدود 15 تن به کار می برند . نبشی نشیمن عمل نصب و تنظیم تیر را آسان می کند. این نبشی را معمولا قبلا در کارخانه یا پای کار در ارتفاع لازم به ستون جوش می دهند و بعد تیر روی آن سوار و به آن جوش می شود . در این اتصال ، نبشی کمکی دیگری در بالای تیر نصب و جوش می شود که در محاسبه در مقابل عکس العملهای تکیه گاه به حساب نمی آید و عمل آن تنها ثابت کردن تیر در محل خود و تامین تکیه گاه عرضی و جلوگیری از غلتیدن آن است . سعی می شود که

 

اتصال با نبشی نشیمن تا حد امکان انعطاف پذیر باشد تا از آزادی دوران تیر در تکیه گاه جلوگیری نشود و در حقیقت ، اتصال ساده و مفصلی باشد تا در تکیه گاه ایجاد لنگر نکند . معمولا عرض نشیمن گاه نباید از 5/7 سانتیمتر کمتر باشد . در آیین نامه AISC عرض استاندارد را 10 سانتیمتر برای نشیمن انتخابکرده اند . برای این منظور نبشی فوقانی را با ابعاد ظریف و فقط دو لبه انتهایی بالها آن را (در امتداد عرض بال تیر ) جوش می دهند . لازم به ذکر است که وقتی عکس العمل زیادتر از حد تحمل نبشی گردد ، می توان از نبشی تقویت شده با مقطع T استفاده کرد . ضخامت صفحه نشیمن گاه در حدود ضخامت بال تیر انتخاب می شود . استفاده از صفحات تقویت کننده زیر یک نشیمن به صورت مستطیلی یا مثلثی استفاده می گردد.

اتصال چند پل در یک محل به ستون :

مواقعی که با توجه به پوشش سقف به نصب پل در دو جهت عمود بر هم در محل ستون می شود ، یک پل به بالهای ستون و پل دیگر به جان ستون متصل خواهد شد ؛ در نتیجه ، ستون از دو جهت تحت تاثیر بار قرار خواهد گرفت که باید با توجه به بار وارد شده و دهانه پل ، همچنین تعیین نوع گیرداری پلها در محل ستون اقدامات لازم برای اتصال صحیح و مطلوب به عمل آید .

اگر برخورد پل در خارج از ستون باشد ، باید آن ناحیه را از نظر نیروی خارج از مرکز ، همچنین نحوه اتصال صحیح و اصولی به ستون به دقت بررسی و کنترل کرد.

روش نصب پلها در طبقات : محل نصب پلها در اسکلت فلزی بسیار مهم است ، زیرا پلها تحمل کننده بار سقف از طریق تیرها هستند . با توجه به مقدار بار وارد شده و دهانه ، ارتفاع آنها مشخص می شود و معمولا از ضخامت سقف و ارتفاع تیرها بیشتر است ؛ بنابراین ، با توجه به نقشه های معماری و تقسیم فضاها ، پلها باید در جایی طراحی و نصب شوند که به علت ارتفاع زیاد ایجاد اشکال در کف نکنند و سعی شود به صورت آویز در سقف مشخص نباشد ، به این دلیل ، معمولا پلها در زیر دیوارهای جدا کننده بین فضاها مصب می شوند که علاوه بر بار وارد شده باید وزن دیوارهای جدا کننده بر روی آنها در محاسبه منظور شود.

روش اتصال پل به پل :

 اتصال دو پل که دارای ارتفاع هستند ، به روش زبانه کردن آنها انجام می گیرد که این روش از نظر اتصالات بهتر است . در صورت امکان پل با دهانه بزرگتر در داخل پل با دهانه کوچکتر زبانه می شود . نصب ورق اتصال در جان و روی بال پل کوچکتر برای برش ضروری است  . در این حالت ، به علت کوتاه بودن دهانه ، لنگر خمشی  کمتری ایجاد شده در نتیجه ، نمره با سطح مقطع پلها کاهش می یابد

تیر پوشش :

 نوع پوشش سقف در طبقات اسکلت فلزی با توجه به کاربرد ساختمان تعیین می شود که معمولا سقفهای بتن آرمه یا طاق ضربی مورد استفاده قرار می گیرند . معمولا تیرآهن پوشش از پروفیلهای IPE و INP  استفاده می شود . فاصله تیرها بین 65/0 تا 10/1 متر و طول را حداکثر تا 5 متر در نظر می گیرند . البته خیز باید مورد توجه باشد.

اتصال تیر پوشش به پل به وسیله نبشی :

 

 

 معمول در اتصال تیر پوشش به پل از حالت جوش و نبشی استفاده می شود . هر چه بتوانیم محل اتصال را تا حدودی گیردار به وجود آوریم ، لرزش در تیر پوشش کمتر خواهد بود و مساله خیز به نحو مطلوبتری حل خواهد شد ؛ البته اگر طبق محاسبات نحوه اتصال نیم گیردار انجام دهیم ، در مصرف پروفیل صرفه جویی خواهد شد.

مهار کردن تیرهای پوشش :

 تیرهای پوشش را علاوه بر اتصال درست به تکیه گاه ، بایستی از نظر حرکات جانبی و پیچش  ، کمانش قطری ، لهیدگی مورد کنترل قرار داد و آنها را مهار کرد . در اسکلت فلزی معمولا تیرهای پوشش را با گذاردن میلگرد ها بصورت ضربدری و جوش به بال تیر آهن و اتصال به قسمتهای پوشش تکیه گاه اسکلت را مهار کرده و بادبند افقی تشکیل می شود. در دهانه کناری از میلگرد های افقی که مانع رانش دهانه ابتدایی و انتهایی می شود، استفاده می کنند.

لقمه ها و پرکننده ها : طبق آیین نامه سازهای جوشی ، پرکننده (لقمه) با ضخامت6 میلیمتر و یا بیشتر باید به اندازه کافی از لبه های ورق وصله بیرون باشد تا به قطعه ای که به آن نصب می شود ف به حد کافی جوش داده شود . به طوری که بتواند نیروی ورق وصله را که به ورق پرکننده وارد می شود ، منتقل نماید . لبه های پرکننده هایی که ضخامت آنها از 6 میلیمتر کمتر است ، باید با لبه های ورق وصله هم باد باشند . در این حالت ، اندازه جوش باید مساوی مجموع اندازه جوش لازم برای حمل نیروی وصله به اضافه ضخامت ورق پرکننده در نظر گرفته شود.

روش اجرای طویل کردن تیرها :

 ابتدا در محل مناسب دو تیرآهن  در امتداد یکدیگر قرار داده می شوند . برای جوشکاری کامل بین دو تیرآهن در هر یک از پروفیلها درز با پخ مناسب ایجاد می شود ؛ سپس به جوشکاری با نفوذ لازم اقدام می گردد ؛ آن گاه سطح جوش را سنگ می زنند و بلافاصله با پلیت درز را می پوشانند و اطراف آن را جوش کامل می دهند . اندازه وصله اتصال و طول جوش لازم باید محاسبه شود. بهترین محل مناسب ورق برای طویل کردن ناحیه نقطه عطف لنگر خمشی و تلاش برشی است و باید از اتصال ورق در ناحیه برش ( نزدیک تکیه گاه ) و لنگر ماکزیمم(وسط دهانه ) پرهیز کرد . در صورت اجبار ، باید علاوه بر جان تیرآهن بالها را به نحوه مطلوب با ورق اتصال جوشکاری کرد .

چگونگی اتصال کنسولهای غیر ممتد :

 در سیستم اسکلت فلزی ، پیش آمدگی ( کنسول) که در اصطلاح بالکن نامیده می شود ، به دو شیوه اجرا می گردد : یکی پیش آمدگی ممتد که پلها از ستون عبور می کنند و کنسول لازم به دست می آید ؛ دیگر اینکه کنسول به صورت غیر ممتد باسد ، اتصالات باید نسبت به طول کنسول و مقدار بار وارده طراحی شود و نحوه قرار گیری آن به ستون مد نظر باشد . چون کنسول در محل تکیه گاه ممان منفی دارد و باید آن را با گذاشتن ورق مطابق اتصالات صلب ، همچنین در صورت لزوم اضافه کردن لچکی به ورق بالا اتصال صحیح به ستون اجرا شود . کلیه ابعاد و اندازه اتصالات و تقویت کننده ها باید طبق محاسبه صورت گیرد.

****  همه چیز در مورد تیرهای لانه زنبوری

تعریف تیرهای لانه زنبوری  :

 

دلیل نامگذاری تیرهای لانه زنبوری ، شکل گیری این تیرها پس از عملیات ( بریدن و دوباره جوش دادن ) و تکمیل پروفیل است . اینگونه تیرها در طول خود دارای حفره های توخالی (در جان) هستند که به لانه زنبور شبثه است ؛ به همین سبب به اینگونه تیرها لانه زنبوری می گویند.

هدف از ساخت تیرهای لانه زنبوری  :

هدف این است که تیر بتواند ممان خمشی بیشتری را با خیز (تغییر شکل ) نسلتا کم، همچنین وزن کمتر در مقایسه با تیر نورد شده مشابه تحمل کند ؛ برای مثال ، با مراجعه به جدول تیرآهن ارتفاع پروفیل IPE-18 را که 18 سانتیمتر ارتفاع دارد ، می توان تا 27 سانتیمتر افزایش داد.

محاسن و معایب تیر لانه زنبوری :

باتوجه به مثال گفته شده در بالا با تبدیل تیرآهن معمولی به تیرآهن لانه زنبوری ، اولا : مدول مقطع و ممان انرسی مقطع تیر افزایش می یابد . ثانیا : مقاومت خمشی تیر نیز افزوده می گردد . در نتیجه ف تیری حاصل می شود با ارتفاع بیشتر ، قویتر و هم وزن تیر اصلی . ثالثا : با کم شدن وزن مصالح و سبک بودن

تیر ، از نظر اقتصادی مقرون به صرفه تر خواهد بود. رابعا : از فضاهای ایجاد شده (حفره ها) در جان تیر می توان لوله های تاسیساتی و برق را عبور داد. در ساختن تیر لانه زنبوری مه منجر به افزایش ارتفاع تیر می شود ، باید استاندارد کاملا رعایت گردد ؛ در غیر اینصورت ، خطر خراب شدن تیر زیر بار وارد شده حتمی است.

از جمله معایب تیر لانه زنبوری ، وجود حفرهای آن است که می تواند تنشهای برشی را در محل تکیه گاهها پل به شتون یا اتصال تیراهن تودلی (تیر فرعی) به پل لانه زنبوری تحمل کند ؛ بنابراین ، برای رفع این عیب ، اقدام به پر کردن بعضی حفره ها با ورق فلزی و جوش می کنند تا اتصال بعدی پل به ستون یا تیر فرعی به پل به درستی انجام شود. تیر لانه زنبوری در ساختمان اسکلت فلزی می تواند به صورت پل فقط در یک دهانه یا به صورت پل ممتد به کار رود . برای ساختن تیر لانه زنبوری دو شیوه موجود است  : الف ) شیوه برش پانیر ب) شیوه برش لتیسکا

روشهای مختلف برش تیر آهن :

1-  برش به روش کوپال : با استفاده از دستگاه قطع کن سنگین که به گیوتین مخصوص مجهز است  ، تیرآهن به شکل سرد در امتداد خط منکسر قطع می شود.

2-  برش به روش برنول : برش در این حالت به صورت گرم انجام می گیرد ؛ به این صورت که کارگر ماهر برش را با شعله بنفش رنگ قوی حاصل از گاز استیلن و اکسیژن، به وسیله لوله برنول ، انجام می دهد.

بریدن تیرهای سبک به وسیله ماشینهای برش اکسیژن شابلن دار نسبتا ساده است .

در ایران تیرهای لانه زنبوری را بیشتر با دست تهیه می کنند.

روشهای ساختن تیر لانه زنبوری و تقویت آن :

روش تهیه تیرهای لانه زنبوری از این قرار است که ابتدا در روی جان تیرآهن نورد شده با استفاده از اگو که بصورت 5. شش ضلعی از ورق آهن سفید یم میلیمتری (شابلن) با توجه به استاندارد ساخته شده خط می گردد ؛ سپس تیرآهن را روی یک شاسی افقی با زدن تک خال جوش در نقاط مختلف برای جلوگیری از تاب برداشتن قرار می دهند . آن گاه با استفاده از دستگاه برش (برنول) در امتداد خط منکسر اقدام به برش می کنند تا

 

پروفیل به دو قسمت بالا و پایین تقسیم شود. حال اگر قسمت بالا را به اندازه یک دندانه جابجا کنیم و دندانه های دو قسمت با و پایین را به دقت مقابل هم قرار دهیم و از دو طرف کارگر ماهر آنرا جوشکاری کند با استفاده از جوش قوسی نیمه اتوماتیک برای اتصال دو نیمه بریده شده ؛ یک جوش خوب ، بی عیب ؛ سریع و مقرون به صرفه خواهد بود . همان طور که در مطالب قبلی نیز گفتم ، تیر ساخته شده در محل تکیه گاهها با توجه به حفره های خالی آن در مقابل تنشهای برشی ضعیف می شود . برای جبران این نقیصه ، با توجه به منحنی نیروی برشی نیز به پر کردن حفره ها با ورقهای تقویتی اقدام می کنیم.لازم به ذکر است که حداقل باید یک حفره با ورق در تکیه گاه به وسیله جوش کامل پر شود.

در پایان یادآور می شوم که یک نوع دیگر از پروفیلهای لانه زنبوری را پس از بریدن قطعات بالا و پایین ورق واسطه اضافه می کنند که این ورق ورق واسطه بین دندانه ها جوش می شود . در نتیجه ، تیر حاصل به مراتب قویتر از تیری است که بدون ورق واسطه ساخته می شود .

تقویت تیرهای لانه زنبوری به کمک رفتار مرکب بتن و فولاد در تیرهای لانه زنبوری علاوه بر تنشهای خمشی اصلی در محل حلقه ها تنشهای خمشی ثانویه حاصل از برش در مقطع ایجاد میگردد که گاهی این تنش از تنشهای خمشی اصلی در تیر بزرگترند. این تنشها از کارایی تیر می کاهند و برای مقابله با آنها باید حلقه های کناری را با ورق پر کرد خصوصا هنگامی که از این نوع تیرها بصورت یکسره استفاده می شود در محل تکیه گاهها که هم نیروی برشی و هم لنگر خمشی زیاد می باشد تنشهای خمشی بشدت افزایش میابد و نیاز به تقویت تیر در این محلها می باشد که از لحاظ اقتصادی قابل توجیه نمی باشد. در این پروژه برای مقابله با این ضعف در تیرهای لانه زنبوری رفتار مرکب بتن و فولاد تهیه شده هست . به این ترتیب که داخل تیر فلزی در نقاطی که تنشهای ثانویه قابل ملاحظه می باشند از بتن پر می شود و کشش حلقه های خالی را به عمل تغییر می دهد و این امر سختی و مقاومت تیر را افزایش می دهد و از نظر اقتصادی مقرون به صرفه می باشد.

**** شکل پذیری و ظوابط طراحی قابهای متشکل از تیرهای لانه زنبوری از دیدگاه مقاومت در برابر زلزله:

قابهای متشکل از تیر های لانه زنبوری به طور گسترده و روز افزون (غالبا توام با سیستم مهار بندی متقرب المحور ) در صنایع ساختمانی کشورمان مورد استفاده قرار داده می شوند . خصوصیات هندسی تیرهای لانه زنبوری به نحوی است که تحت اثر تغییرات لنگر خمشی ، تغییر شکلهای (اصطلاحا ) ثانوی برشی ، که اغلب قابل ملاحظه اند به وقوع پیوسته تغییر مکان جانبی سازه تحت اثر اعمال نیروهای جانبی ناشی از زلزله در جهت عدم اطمینان می گردد. اثرات این تغییر شکلها ، در تیر های لانه زنبوری در مقایسه با تیرهای دارای جان توپر با سختی خمشی معادل، منجر به بروز تغییر مکان جانبی بیشتر و نتیجتا افزایش اثر بار p  ، به ویژه در حیطه رفتار ماوراء الاستیک در این قابه می گردد . بروز تمرکز تنش و شدت زیاد حوضه تنشی در گوشه سوراخها ، ملاحظاتی را در طراحی این تیرها در مقابل اثرات ناشی از پدیده خستگی کم تواتر در اثر وقوع زلزله ، ایجاب می نماید .

گونه های مختلف گسیختگی تیرهای لانه زنبوری ، شامل انحنا ء مختلف کمانش کلی و موضعی و کمانیسم محتمل پلاستیک و شکست می باشد .  باتوجه به آنکه شکل پذیری و توانایی جذب انرژی ، تابع میزان قابلیت رفتار عضو سازه ای در حیطه پاسخ غیر خطی ماوراء الاستیک بوده و معیارهای مناسبی از دیدگاه ظرفیت مقاومت و کیفیت رفتار در مقابل نیروهای ناشی از زلزله شدید تلقی می گردند . ضرورت تدوین ظوابط منطقی جهت ایجاد

 

امکانات رفتار شکل پذیر در قابهای متشکل از تیرهای لانه زنبوری محرز می گردد . بر اساس مطالعات آنالیتیک عددی و آزمایشگاهی رفتار خمیری و حدی این تیرها مورد بررسی قرار داده شده نکاتی در مورد مقولاتی از قبیل اثرات تمرکز تنش ، تنش های پس ماند بروز پلاستیسیته موضعی و گسترده ، مکانیسمهای گسیختگی پلاستیک مورد بحث قرار داده شده است و رفتار غیر خطی تیر لانه زنبوری از نظر عملکرد غیر خطی مصالح ، با در نظر گرفتن اثرات سخت شدگی جنبشی به روش اجزاء محدود مطالعه شده و با ملحوظ داشتن اثرات گسترش ترک در گوشه سوراخها در کاهش ضرفیت باربری حد نهایی تیر ، رفتار غیر خطی تیر به صورت روابط بار تغییر مکان و لنگر و تغییر زاویه ارائه گردیده است  که با نتایج حاصل از آزمایش مطابقت داشته است . همچنین از طریق طرح ریزی آزمایشهای ویژه رفتار غیر خطی اجزا تشکیل دهنده تیر لانه زنبوری مطالعه آزمایشگاهی چندی بر تیرهای لانه زنبوری اصلاح شده به منظور بهبود رفتار خمیری و افزایش شکل پذیری گزارش شده است . تحقیقات جاری شامل بررسی آزمایشگاهی رفتار قابهای متشکل از تیرهای لانه زنبوری از دیدگاه شکل پذیری همچنین مطالعه پدیده کمانش جانبی پیچشی چون در دست انجام است تا بدست آمدن نتایج مطالعات جامعتر از دیدگاه رفتار لرزه ای توصیه های ذیل را می توان به عنوان الگوی اولیه جهت تدوین

ضوابط طراحی سازهای فولادی متشکل از تیرهای لانه زنبوری مقاوم در مقابل زلزله( یا بدون سیستم های مهار بندی ) به عنوان مکمل ضوابط طراحی تیرهای لانه زنبوری تلقی نمود:

1- اثرات تغییر شکلهای برشی ثانویه تیر لانه زنبوری ( و ستونهای تسمه دار) در تحلیل ملحوظ گردد.

2- تحلیل با در نظر گرفتن نیروی p   انجام شود.

3- تحلیل با در نظر گرفتن اثرات ناشی از انعطاف پذیری اتصالات مربوطه انجام شود.

4- تا انجام تحقیقات گسترده تر به منظور کاهش تغییر مکان جانبی سیستم مقاوم حتی المقدور از سیستم قاب فضا کار متشکل از تیرهای لانه زنبوری بدون استفاده از سیستم مهاربندی مختلط اجتناب گردد.

5 در کلیه اجزاء تیر خواص مقاطع فشرده رعایت گردد.

6- طول عضو لانه زنبوری به نحوی اختیار گردد که مقاومت پلاستیک مقطع از نظر کنترل طرح با ایمنس مکفی بر سیلان برشی پیشی گیرد و به طور کلی مکانیسم پلاستیک خمشی یا شبه ویرندیلی مقدم بر سایر گونه های گسیختگی صورت پذیرد و تا میزان قابل ملاحظه ای از تغییر شکل از بروز گونه های گسیختگی ممانعت به عمل آید.

7 از سخت کننده های جان در پانل های انتهایی استفاده شود و محاسبات با در نظر گرفتن اثر سخت شدگی جان انجام گردد.

8- برای ممانعت از بروز گسیختگی تردگونه و همچنین بروز کمانش موضعی در گوشه بازشوها و بهبود رفتار تحت اثر پدیده خستگی کم تواتر قوسی به مشخصات ارائه شده در ضمیمه الف مبحث دهم مقررات ملی ساختمانی ایران در گوشه بازشوها اجرا گردد.

9 از جوش با نفوذ کامل استفاده گردد.

10 به منظور جلوگیری از کمانش جانبی-پیچشی مقاطع T  ، تا فاصله 4/1 طول دهانه از اتصال تیر به ستون قیود جانبی به فواصلی برابر با بعد به پانل  و از آن به بعد فواصل متناسب برای تیرهای شکل پذیر در نظر گرفته شود.

 

11 از تقویتهای مناسب جان برای جلوگیری از کمانش تحت اثر بار متمرکز و برش زیاد استفاده گردد.

12- از تقویتهای مناسب جان برای افزایش ظرفیت چرخشی لوله های مقاطع T در مکانیسم شعبه ویرندیلی در پانلهای بحرانی استفاده گردد.

13 تا انجام تحقیقات گسترده تر ، تحت بارهای دوره ای و مطالعه رفتار هیستریک ، سیستم های قاب فضا کار متشکل از تیرهای لانه زنبوری ، توام با سیستمهای مهاربندی (مختلط) به عنوان قاب فضا کار لنگر گیر معمولی (بدون قابلیت عملکرد و شکل پذیر ویژه ) و با ضریب رفتار مناسب با آن بکار گرفته شود.

14- حداکثر ارتفاع سیستم های مختلط توام با قاب معمولی متشکل از تیرهای لانه زنبوری به 50 متر محدود گردد.

15 استفاده از تیرهای لانه زنبوری به عنوان عضو تیر واسط در قابهای مهاربندی شده با سیستم مهاربندی واگرا مجاز نمی باشد.

16 فولاد مورد استفاده باید از نوع شکل پذیر ، با مقاومت مناسب در مقابل گسیختگی سریع و با دمای انتقال پایین باشد.

17 حداکثر مقاومت سیلان فولاد مورد مصرف  3600  kg/cm2 محدود گردد.

18 نوع سطوح برشی حاصل از ماشین و برش اتوماتیک شعله ای با کیفیت خوب قابل قبول می باشد ولی سطوح برشی حاصل از برش شعله ای دستی باید پرداخت داده شود.

19 حداکثر رواداری مجاز از نظر عدم هم امتداد بودن و دو نیمه جوش شده تیر که بر حسب نسبت اندازه نابجایی اولیه در وسط ارتفاع اعضاء قائم جان به ارتفاع کل جان تعریف می شود.

20 حتی المقدور طراحی این تیرها به صورت مرکب (مختلط) با عملکرد توام با بتن کف انجام شود. اتصالات موسوم به خورجینی قبل از آنکه بتوان در مورد نحوه عملکرد اتصالات موسوم به خورجینی از دیدگاه رابطه بین لنگر و چرخش اتصال و همچنین شکل پذیری اتصال و در نتیجه میزان مطلوب بودن این اتصالات به عنوان اتصالات قابهای فضایی شکل پذیر یا بدون مهار بندی اضهار نظر قطعی نموده ، لازمست تحقیقات دامنه داری در مورد رفتار استاتیکی و دینامیکی اینگونه اتصالات انجام شود.

مطالعاتی که در حیطه الاستیک روی رفتار تیرهای خورجینی انجام گرفته حاکی از آن است که میزان گیرداری این اتصالات را می توان در جهات تیرهای خورجینی با استفاده از ورقهای اتصال که در بالا و پایین به بال تیرهای خورجینی و به ستون و در عین حال به کناره نبشی های اتصال فوقانی و تحتانی جوش شده اند ، بهبود بخشید و تمایل به پیچش ناشی از برون محوری را در ناحیه اتصال خنثی نمود و در عین حال از نظر میزان تمرکز تنش نیز شرایطی مناسبی را ایجاد کرد  استفاده از لچکی هایی جهت جلوگیری از تغییر شکل نبشیهای اتصال فوقانی و تحتانی نه تنها از نظر ایجاد محدودیت و قیود بیشتر در تغییر مکان جانبی پیچشی تیرهای خورجینی بلکه از نظر افزایش میزان گیرداری اتصال تیر فرعی به مجموعه نیز خورجینی و ستون نیز موثر می باشد. در عین حال با توجه به تمایل تیرهای خورجینی به تغییر مکان جانبی پیچشی به علت برون محوری ، انتضار می رود تیرچه ها و مصالح مورد استفاده در کف طبقات معولا قادر به جلوگیری از تغییر مکان جانبی-پیچشی تیرهای خورجینی و بهبود بخشیدن به این نقطه ضعف ناشی از برون محوری اتصال باشند.

 

استفاده از ورقهای فوقانی و تحتانی به نحوه مذکور در سطور فوق در محل اتصال و همچنین استفاده از تسمه های متصل کننده تیرهای خورجینی در فواصلی متناسب در طول دهانه تیرهای خورجینی از نظر محدود نمودن تغییر شکلهای جانبی پیچشی تیرها مفید خواهند بود . استفاده از تیرهای خورجینی ناودونی و ستونهای دوبل متشکل از پروفیلهای ناودونی به نحوی که جان تیر جان تیر خورجینی در تماس با جان پروفیل ، ستون باشد به لحاظ کاهش میزان برون محوری رفتار من حیث المجموع بهتری ، چه از نظر میزان لنگر قابل انتقال توسط اتصال و چه از نظر نحوه توزیع تنشها و ضرائب تمرکز تنش ، در حیطه الاستیک نشان می دهند . تحقیقات بیشتر در زمینه رفتار ماوراء الاستیک این اتصالات و رفتار در مقابل بارهای متناوب دوره ای و تغییر علامت دهنده در حال حاظر در دست انجام می باشد.

**** نکات اجرایی دیوارهای غیر باربر در اسکلت فلزی :

برای اجرای دیوارهای غیر بار بر با تیغه ها باید ضوابطی را به این شرح در نظر گرفت :

1-   حداکثر طول مجاز و دیوار غیر باربر با تیغه بین دو پشت بند عبارت است از40 برابر ضخامت دیوار یا تیغه و یا 60 متر ، هر کدام کمتر است.

2-   پشت بند (وادار) باید به ضخامت حداقل معادل ضخامت دیوار و به طول حداقل6/1 بزرگترین دهانه دو طف پشت بند باشد . به جای پشت بند می توان ستونکهای قائم فولادی ، بتن آرمه یا چوبی در داخل تیغه یا دیوار قرار داد و در دو سر ستونکها را به طور مناسبی در کف و سقف طبقه مهار کرد.

3- حداکثر ارتفاع مجاز دیوارهای غیر باربر و تیغه ها از تراز کف مجاور3.5 متر است . در صورت تجاوز از این حد باید همراه با تیغه توسط کلافهای افقی و قائم به طور مناسبی به تقویت دیوار اقدام کرد.

4-   تیغه هایی که در تمام ارتفاع طبقه ادامه دارند ، باید کاملا به زیر پوشش سقف مهر شوند ، یعنی رگ آخر تیغه همراه با فشار کافی در سقف جای داده شود .

لبه فوقانی تیغه هایی که در تمام ارتفاع طبقه ادامه ندارند، باید با کلاف فولادی با بتن آرمه یا چوبی که به سازه ساختمان یا به کلاههای احاطه کننده تیغه متصل است، کلاف بندی شود.

5-لبه قائم تیغه ها نباید آزاد باشد . این لبه ها باید به یک تیغه دیگر یا یک دیوار عمود بر آن ، یا یکی از اجزای سازه یا ستونکی که به همین منظور از فولاد ، بتن آرمه یا چوب تعبیه می شود، با اتصال کافی داشته باشد. ستونک می تواند از یک ناودانی حداقل نمره 6 یا معادل آن از فولاد ،بتن آرمه یا چوب تشکیل شده باشد . اگر طول تیغه پشت بند کمتر از  1.5  متر باشد ، از لبه آن می تواند آزاد باشد.

6-   در صورتیکه دیوار و تیغه متکی به ان به طور همزمان یا بصورت لاریز یا هشتگیر چیده شوند، اتصال تیغه به دیوار کافی تلقی می گردد. ولی چنانچه تیغه بعد از ساختن دیوار و بدون اتصال به آن ساخته شود ، باسد در محل تقاطع در داخل ملات بین رگها با میلگرد به قطر 8 میلیمتر ( یا تسمه فولادی معادل آن) که حداقل در طول 25 سانتیمتر در داخل دیوار و 50 سانتیمتر در داخل تیغه قرار می گیرد ، به ارتفاع حداکثر 60 سانتیمتر تیغه را به دیوار مهر کرد. در غیر این صورت لبه کناری تیغه آزاد تلقی می شودو طبق مطالب گفنه شده در بالا باید ستونک در این لبه تعبیه گردد. ضمنا در تیغه عمود بر هم با یکدیگر قفل و بست شوند.

سایر توصیه های اجرایی آیین نامه ها در ساختمانهای اسکلت فلزی:

 

1-  اگر دهانه خرپا یا شاهتیری بیش از 8 متر باشد ، برای جبران تغییر شکل در اثر بار مرده باید قبلا به آن کوژ یا خیز منفی (پیش خیز ) یا تغییر شکل رو به بالا بدهیم . مقذار تغییر شکل را مهندس محاسب تعیین می کند.

2-  برای جلوگیری از خوردگی قطعات فولادی حداقل ضخامت اجزای اعضای سازه ای که در فضای خارج و در معرض عوامل جوی یا اثرات خورنده دیگر قرار دارند ، از 6 میلیمتر کمتر نباشد. در محیطهای خشک و به دور از هر گونه آثار خورندگی ، این مقدار به 5 میلیمتر کاهش می یابد.

3-  به کار بردن روشهای گرم کردن موضعی یا تغییر شکل مکانیکی برای ایجاد انحنا و یا از بین بردن ان ( راست کردن خم ) مجاز است. دمای موضعهای گرم شده نباید از 565 سانتیگراد برای فولادهای قوی مخصوص و 650 درجه سانتیگراد برای فولادهای نرمه بیشتر باشد. صافکاری آهن الات در درجه حرارتهای بالا به نوعی که رنگ محل تحت حرارت آبی باشد ، مجاز نیست.

4-  لبه هایی که با شعله بریده می شوند ، ( و در آینده محل وارد شدن تنشهای کششی بزرگی خواهد بود )  باید کاملا یکنواخت و خالی از ناهمواریهای بیش از 5 میلیمتر باشند. ناهمئاریها و خراشیدگیهای بیش از 5 میلیمتر را باید با سنگ زدن و در صورت لزوم با جوش هموار نعمیر کاری کرد ؛ همچنین لبه های بریده شده با شعله که مصالح جوش در آن قرار خواهد گرفت ،  باید تا حد امکان عاری از ناهمواری و بریدگی باشد.

5-  در درزهای فشاری که در آنها انتقال نیرو از طریق فشار تماسی مستقیم قسمتی از ظرفیت اتصال را تشکیل می دهد ، باید سطوح قطعات در تماس ، به وسیله تراش دادن ، سوهان زدن ، سنگ زدن و روشهای مناسب دیگر به خوبی آماده شده باشد.

6-  در بلند کردن قطعات بویژه شاهتیرهای بلند و خرپاها باید از نقاط مخصوص که قبلا معین شده است با احتیاط کامل به منظور جلوگیری از ایجاد تنش زیاد در قطعه استفاده کرد.

7-  به منظور تصحیح نقایص جزئی ساخت معمولا می توان از تراش ، ضربه و یا بزش کم استفاده کرد ، ولی هرگز نباید از مشعل برش ، مخصوصا برای رفع نقایص قطعات اصلی که معمولا تحت فشار هستند ، استفاده نمود . استفاده از مشعل ممکن است در رفع نقایص تیرهای فرعی که تحت فشار نیستند ، مجاز باشد. در هر صورت ، پس از رفع نقص ،‌تمیزکاری سطوح ، مخصوصا سطوحی که روی هم قرار می گیرند ، الزامی است.

8-  در صورتیکه در ابعاد نهایی اسکلت فلزی انحرافاتی مشاهده شود ، اگر مقادیر آنها از مقادیر انحراف مجاز نصب بیشتر نباشد ، کار انجام شده در ردیف کار خوب به شمار می آید . به طور کلی ، هر یک از قطعات نصب شده  باید شاغول یا تراز شود و در محور صحیح تشخیص طبق نقشه قرار می گیرد ، به شرطی که انحراف آن از500/1 بیشتر نباشد.

9-  در نصب قطعات فلزی همواره خطرات جانی وجود دارد ؛ بنابراین باید کلیه نکات ایمنی ، چه از نظر پوشش و چه از نظر کاری رعایت شود . قطعات فلزس در نصب مقدماتی (موقت) باید ب پیچ و مهره یا هر وسیله ممکن ، به نحوی که در مقابل تنشهای نصب و مانور کارگران مقاومت نماید ، به هم متصل شوند. به جز در مواردی که در بادبندهای کافی به طور دائمی در اسکلت تعبیه شده است ، همواره باید از مهارها و بادبندهای موقتی و مستحکم تا زمانی که ایمنی ایجاب می کند و اسکلت فلزی پایداری خود را به دست نیاورده است ، برای جلوگیری از خطر سقوط قطعات فلزی استفاده کرد .

 

**** اثر طراحی و اجرای اتصالات جوشی بر آسیب پذیری لرزه ای سازه های فولادی

باگذشت حدود 50 سال از کاربرد اتصالات جوشی در صنعت ساختمان در ایران هنوز نقایص زیادی در اجرای ساختمانهای فولادی جدید مشاهده  می شود. در یک بررسی اولیه عوامل زیر را می توان به عنوان  دلایل  اصلی نقایص ذکر کرد که در همین بخش اشاره خواهم کرد :

1-     عدم طرح دقیق اتصالات جوشی با  توجه به عملکرد مورد نظر آنها

2 -     عدم انطباق اجرای معمول ساختمان با آیین نامه ها و   دستورالعملها

3-     کیفیت پایین جوش به علت  عدم وجود آموزش کلاسیک کافی در این زمینه برای مهندسان و جوشکاران

4-     نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور.

در این قسمت از  مقاله بعد از مرور خرابیهای سازه های فولادی در زلزله های گذشته ایران و جهان سعی گردیده تا طراحی و اجرای معمول و سنتی سازه های فولادی جوش شده درکشور با  حالت قابل قبول آن مقایسه گردد. برای این منظور از آیین نامه های معمول طراحی سازه های فولادی ایران و آیین نامه های طراحی کشورهای صنعتی زلزله خیز استفاده شده تا مشخص شود که چه مواردی از اجرا یا آیین نامه ها و دستورالعملهای اجرایی همخوانی ندارد. علاوه بر آن مطالعه ای بر روی نقاط ضعیفی که ناشی از اجرای جوش می باشد انجام گرفته و در پایان پیشنهاداتی برای بهبود وضع موجود و کاهش خطرات ناشی از زلزله ها در این نوع  سازه  ها  ارایه گردیده است.

قبل از شروع این بحث بهتر است بحث را با مقدمه کوتاهی شروع کنم :

سازه فولادی از مجموعه ای از اعضای باربرساخته شده از نیمرخهای فولادی یا ورق می باشد که به کمک اتصالات به یکدیگر متصل می گردند . با توجه به روشهای تکامل یافته ای که برای تولید نیمرخ های فولادی به  کار گرفته می شود این مقاطع غالبا رفتار در حد قابل انتظاری از  خود نشان می دهند. مساله بسیار مهم رفتار اتصالاتی است که  الف)   برای ساخت اعضای مرکب از نیمرخ و ورق برای یکپارچه نمودن  اعضا (شامل تیر و ستون و مهاربندها ) در محل گره ها مورد استفاده قرار می گیرد . وسایلی که برای ساخت اعضا  و اتصال آنها به  یکدیگر به کار می رود شامل پیچ و پرچ و جوش است . در این میان استفاده از جوش در ساختمان سازی متعارف در ایران بسیار رایج است.تا زمان وقوع زلزله نورث ریچ (1994 )تصور بر این بود که در صورت رعایت اصول فنی در طرح و اجرای سازه های فولادی جوشی این سازه هادر زلزله عملکرد قابل قبولی از خود  نشان می دهند.اما وقوع این زلزله این فرض را زیر سوال برد . در این زلزله مشاهده شد که در بسیاری از اتصالات , در محل درز جوش اتصال , فلز مادر (Base metal) دچار ترک یا بعضا شکست شده است. این مساله باعث شد تا تحقیقات گسترده ای در مورد علت این پدیده صورت گیرد که این تحقیقات  تا به امروز ادامه دارد . از طرف دیگر مشاهده و تحقیق  درباره وضعیت ساخت و ساز ساختمانهای فولادی نشان می دهد که اتصالات جوشی متداول در ایران از کیفیت مناسبی برخوردار نیستند و با وجود سابقه نسبتا طولانی در استفاده از جوشکاری در صنعت ساختمان هنوز نقایص  زیادی در این زمینه مشاهده می شود.

عملکرد  لرزه ای ساختمانهای فولادی

 

 

براساس تجربه های حاصل از زلزله های گذشته و مطالعات انجام گرفته سازه هایی در برابر زلزله دارای عملکرد بهتری هستند که بتوانند ضمن حفظ پایداری و انسجام کلی خود انرژی ناشی از زلزله را تا حد امکان جذب و مستهلک نمایند.با توجهبه منحنی نیرو-تغییر مکان  سازه ها و توجه به  این مطلب که سطح بین منحنی نیرو-تغییرمکان و محور تغییرمکان نشان دهنده میزان انرژی جذب شده توسط سازه است.هر چه سازه شکل پذیرتر باشد انرژی بیشتری را  هنگام زلزله جذب کرده و رفتار مطلوبتری دارد.  فولاد نرمه به علت طبیعت شکل پذیر از این نظر ماده مناسبی می باشد و می تواند میزان زیادی انرژی جذب کند . اما تجربه نشان داده است  که در سازه  های فولادی  در صورت عدم استفاده از اتصالات مناسب عملکرد مناسب لرزه ای آنها مناسب و قابل قبول نخواهد بود و در اثر زلزله دچار شکست سازه ای و یا انهدام خواهد شد.در زلزله منجیل (1369) مشاهده شد که تعدادی از ساختمانهای فولادی دچار تخریب کامل شدند. رفتار این سازه ها در این زلزله ثابت کرد که در بسیاری از موارد سازه های موجود دارای سیستم مقاوم زلزله مناسبی نیستند.استفاده  از تیرهای خورجینی(تیرهای سرتاسری در دو طرف ستون با اتصال نبشی) و عدم شناخت سیستم حاصل و مدل صحیح برای این اتصالات باعث شده این سیستم از نظر مهندسی زلزله بسیار آسیب پذیر تلقی گردد .درس حاصل از این زلزله کیفیت پایین ساخت و ساز شهری بودکه در سالهای اخیر تلاشهایی برای اصلاح آن به عمل آمده است. در زلزله نورث ریچ آمریکا مشاهده شد که در بسیاری ازساختمانهای فولادی  اتصال تیرها و ستونها دچار ترک ویا بعضا شکست شد . بیشتر این ترکها و شکستها در بال ستون اتفاق افتاده است.

صنعت جوشکاری ساختمان در ایران

با گذشت 50 سال از استفاده از جوش در ساختمان دهه اخیر (80-1370 ) از نظر تعداد ساختمانهایی که  با سازه های فولادی طراحی و اجرا شده اند کاملا استثنایی به شمار می آید. در نیمه دوم این دهه دهها هزار سازه فولادی در تهران و شهرهای بزرگ ایران به ناگهان سر از زمین برآورد . گسیل سرمایه ها به سوی ساخت و ساز شهری و تبدیل ساخت سرپناه به ماشین سرمایه گذاری جهت سودهایکلان باعث گردید تا رعایت اصول فنی و ایمن سازی ساختمانها در برابر زلزله در برابر منفعت طلبی صاحبکاران عملا مورد توجه قرار نگیرد.از طرف حجم عظیم ساخت و ساز نیروی انسانی زیادی اعم از مهندس و تکنسین و جوشکار احتیاج داشت که باعث ورود افراد غیرمتخصص به این جرگه گردید.تمامی این مسایل دست به دست هم داد تا طرح و اجرای ساختمانهای فولادی آنچنان که  باید از کیفیت  مطلوبی برخوردار نباشد.تخریب کلی ساختمانهای فولادی در زلزله منجیل موید پایین بودنکیفیت ساختمانهای فولادی کشور می باشد. از میان تمامی عوامل  دخیل  در طرح  و ساخت سازه های  فولادی اتصالهای جوشی از نارساییهای بیشتری برخوردارند. علل اصلی پایین بودن کیفیت جوش درساخت و سازهای شهری را می توان  به صورت زیر بیان نمود :

1-     عدم انطباق اجرای معمول سازه های فولادی با آیین نامه ها  و دستورالعملها

2-     کیفیت پایین جوش به علت عدم آموزش کلاسیک کافی در این زمینه برای جوشکاران و مهندسان

3-     نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور

4-     عدم طرح دقیق اتصال جوشی با توجه به عملکرد مورد نظرآنها

 

 

1-  عدم انطباق اجرای معمول سازه های فولادی با آیین نامه ها  و دستورالعملها:

در بسیاری از موارد طرز اجرای متداول جوش باجزییات ارایه شده در آیین نامه تطابق ندارد. این موارد ناشی از موارد متعددی است که از میان آنها به موارد زیر می توان اشاره کرد:

الف) آشنا نبودن مهندسین سازه به مسایل اجرایی و در نتیجه ارایه نقشه ها و جزییات غیرقابل اجرا

ب) گران تر بودن هزینه اجرای جزییات آیین نامه نسبت به روش سنتی اجرا

پ)آگاه نبودن کارفرما و یا مهندس مجری طرح به جزییات آیین نامه و عدم توانایی در تمیز دادن حالات مختلف ازیکدیگر بعد از اجباری شدن آیین نامه 2800(1368) اهمیت وجود سیستم مقاوم در برابر زلزله از یک طرف و محدودیتهای معماری برای استفاده از سیستم مهاربندی از طرف دیگر باعث استفاده روزافزون از سیستم قاب خمشی در جهت عرضی ساختمانها شد.در این سیستم اتصال تیر به ستون از نوع  گیردار بوده یعنی باید توانایی انتقال برش و لنگراز تیر به ستون وجود داشته باشد . در این نوع اتصالات از ورقهای بالاسری و زیرسری که در محل اتصال به ستون برای ایجاد جوش نفوذی کامل خورده است استفاده می شود. اما از آنجاییکه متاسفانه عملیات جوشکاری در محلکارگاههای ساختمانی و نه در محل کارخانه صورت می گیرد کنترل  کیفیت جوش بخصوص در هنگام  مونتاژ درارتفاع زیاد از سطح زمین حتی به صورت عینی(Visual)  امکان پذیر  نمی  باشد. همچنین معمولا در محل  اتصال   ورق به ستون به جای  جوش نفوذی از  جوش گوشه استفاده می شود در نتیجه هنگام زلزله این نقاط  علاوه بر تحمل نیروی کمتر در   حالت تردشکن گیسخته خواهد شد. زمانی که در یک عضو فشاری ازدومقطع در کنار یکدیگر استفاده می شود باید هم پایداری کل عضوبه عنوان یک المان و هم پایداری تک تک مقاطع کنترل شود تا هیچ کدام تحت تاثیر نیروی فشاری به طور جداگانه دچار کمانش نشوند . برای این منظور این مقاطع باید در فواصل مشخص به یکدیگر متصل شوند تاطول آزاد آنها کاهش یابد. بسیاری از اوقات بادبندهای دوبل در طول خود به یکدیگر وصل نمی شوند و در نتیجه دومقطع بایکدیگر عمل نمیکنند و بار بحرانی عضو کمتر از مقداری است که مهندس سازه در محاسبات خود منظور نموده است. مبحث دهم مقررات ملی ساختمان حداکثر فاصله بین جوش دومقطع در ستونهای ترکیبی را مقرر نموده است.اما در موارد زیادی مشاهده می شود که فاصله بین جوش ستونها بیشتراز این مقدار است.

2-    کیفیت پایین جوش به علت عدم آموزش کلاسیک کافی در این زمینه برای جوشکاران و مهندسان یکی از مهمترین اشکالات موجود در اجرای ساختمانهای فولادی در کشور کیفیت پایین جوشکاری ساختمان می باشد . عوامل مختلفی در این امر تاثیر می گذارند .

استفاده ازجوشهای کارگاهی حتی در مورد جوشهای نفوذی و اجرای کل جوشکاری درکارگاه ساختمانی و استفاده از نیروی انسانی غیرمجرب از عوامل اصلی پایین آمدن کیفیت جوشکاری ساختمان می باشد. در نتیجه عوامل برشمرده شده مشکلات عدیده ای گریبانگیر اتصالات جوشی می باشد.

در بسیاری از  موارد سطح فلز در حال جوش آلوده به روغن یا مواد نامناسب دیگر است و یا اینکه روی فلززنگ زده یا رنگ خورده جوش داده می شود . گاه در فاصله بین پاسهای متوالی جوش حتی از جدا نموده گل جوش نیز خودداری می شود و یابدون برداشتن گل جوشکاری اقدام به زدن رنگ ضدزنگ می شود.از انواع جوشهایی که درکارهای ساختمانی بسیار از آن استفاده می شود جوش سربالا می باشد. به علت سختی اجرا در غالب موارد

 

این نوع جوش از کیفیت پایینی برخوردار است. در بسیاری از موارد در اثر استفاده از تکنیکهای نامناسب جوشکاری نقایصی چون تابیدگی و پیچش در قطعات اتفاق می افتد.

عیوبی نظیر نفوذ ناقص  بریدگی کناره جوش  اختلاط سرباره  تخلخل و وجود ترک درفلز مادر  باعث کاهش ظرفیت باربری قطعات می شود. یکی از متداولترین اشکال مقاطع مورد استفاده در سازه های فولادی تیرهای لانه زنبوری می باشد .  بسیاری از مجریان طرح این تیرها را در وضعیت نامطلوبی در کارگاه  ساختمانی مونتاژ میکنند. در بسیاری از موارد جوش میانی تیر از کیفیت پایینی برخورداراست و با توجه به اهمیت عملکرد مناسب این قسمت و تقویتهای لازم درمحل تکیه گاه تیر و وسط آن صورت نمی پذیرد. متاسفانه طراحی و اجرای پلکانهای فولادی در ساختمانها نیز از کیفیت پایینی برخوردار است و با توجه به اهمیت عملکرد مناسب این قسمت ساختمان پس از زلزله دقت لازم در ساخت آن مبذول  نمی شود .

3-    نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور:

با توجه به اهمیتی که شهرداری برای مسایلی از قبیل پارکینگ و نورگیرها و مسایلی از این دست قایل است مشاهده می شود که بیشتر توجه مهندسان نیز به این امور معطوف می باشد و توجه چندانی به مسایل سازه ای نمی شود. البته باید به این نکته نیز اشاره  شود که به علت عدم وجود آموزش جوشکاری در واحدهای درسی دانشجویان عمران مهندسینی که از دانشگاه فارغ التحصیل می شوند در این زمینه دارای اطلاعات کافی نیستند و به عنوان مهندس ناظر نمی توانند مسوولیت خود را به نحواحسن انجام دهند.البته باید به این موارد مساله سختی کار را نیز افزود.به علت جوشکاری در ارتفاع غالب مهندسین از انجام بازدید از این جوشها طفره می روند. در نهایت امر اینکه آنطور که از ظواهر امر مشخص است شهرداریها نیز در این زمینه کوچکترین نقشی ایفا نمی کنند و هیچگونه نظارتی بر اجرای ساختمانها ندارند.

4-    عدم طرح دقیق اتصال جوشی با توجه به عملکرد مورد نظرآنها:

بسیاری از کارفرمایان عمل طراحی سازه و ایجاد تمهیدات مقابله با زلزله  را یک امر زاید می دانند و تلاش می کنند  تا کمترین هزینه ممکن را صرف این  کار نمایند.از طرف دیگر شهرداریها کمترین نظارتی بر طرح و اجرای سازه ها نداشته فقط به مسایل معماری دقت می کنند. این عوامل دست به دست هم می دهد تا فقط حق امضای مهندسین سازه اهمیت داشته باشد و طرح از حداقل اهمیت برخوردار باشد به خاطر همین موضوع  مهندسین سازه  اغلب کمترین وقت را صرف این عمل می نمایند و بالطبع دقت لازم را در طرح اتصالات جوشی مبذول نمی شود. بعضی اوقات از اتصالات طرح شده برای یک ساختمان در نقشه های دیگر ساختمانها استفاده می شود.

در بسیاری از موارد جزییات اتصالات  موجود در نقشه ها نامفهوم بی دقت و ناقص است.

نتیجه گیری از این بخش و همچنین ارائه چند پیشنهاد :

از بررسی های انجام شده بر روی ساخت وساز ساختمانهای فلزی در سطح تهران مشخص است که هنوز مشکلات زیادی در طرح و اجرای این سازه ها وجود دارد. و عمده مشکلات و نقایص مربوط به اتصالات جوشی است.اجرای جوش کارگاهی و نبود آموزشکافی برای مهندسان عمران و عدم نظارت کافی بر حسن اجرای جوش و ... مشکلاتی است که این صنعت را رنج میدهد.و برای رفع این  موارد بهترین راه:

 

1-     در صورت امکان استفاده  از جوش در کارخانه به جای جوش کارگاهی

2-     بالابردن سطح آگاهی عمومی جامعه درباره زلزله بر ساختمانها

3-     آموزش جوشکاری به جوشکاران و دادن گواهینامه به جوشکاران ماهر ساختمانی

4-     آموزش جوشکاری به عنوان  واحد درسی به مهندسین عمران و یا ایجاد شاخه جدیدی تحت  عنوان  بازرسی جوش اسکلت برای مهندسین ناظر

5-     تقویت سیستم نظارتی موجود و ایجاد سیستم های نظارتی ناظربر کار مهندسین عمران

**** دیوار برشی

در پایان این مقاله بد نیست در مورد دیوار های برشی که نقش عمده ای در سازه های ساختمانی را ایفا می کنند اشاره نمایم.مطالب زیر در مورد دیوار های برشی است :

با نیروهای جانبی مؤثر بر یک سازه ( در اثر باد یا زلزله ) به طرق مختلف مقابله می شود که اثر زلزله بر ساختمانها از سایر اثرات وارد بر آنها کاملا متفاوت می باشد . ویژگی اثر زلزله در این است که نیروهای ناشی از آن به مراتب شدیدتر و پیچیده تر از سایر نیروهای مؤثر می باشند . عناصر مقاوم در مقابل نیروهای فوق شامل قاب خمشی ، دیوار برشی و یا ترکیبی از آن دو می باشند . استفاده از قاب خمشی به عنوان عنصر مقاوم در مقابل نیروهای جانبی بخصوص اگر نیروهای جانبی در اثر زلزله باشند احتیاج به جزئیات خاصی دارد که شکل پذیری کافی قاب را تأمین نماید .این جزئیات از لحاظ اجرایی غالبا دست و پاگیر بوده و در صورتی می توان از اجرای دقیق آنها مطمئن شد که کیفیت اجرا و نظارت در کارگاه خیلی بالا باشد از لحاظ برتری می توان گفت که دیوار برشی اقتصادی تر از قاب می باشد و تغییر مکانها را کنترل می کند در حالی که برای سازه های بلند قاب به تنهایی نمی تواند در این زمینه جوابگو باشد . حال به ذکر چند نمونه از دیوارهای برشی می پردازیم :

1-دیوار های برشی فولادی : بعضی مواقع ورقهای فولادی به عنوان دیوارهای برشی بکار می روند . برای جلوگیری از کمانش موضعی چنین دیوارهای برشی فولادی لازم است از تقویت کننده های قائم و افقی استفاده شود.

2-دیوارهای برشی مرکب : دیوارهای برشی مرکب شامل : ورقها ی تقویت شده فولادی مدفون در بتن مسلح ، خرپاهای ورق فولادی مدفون در داخل دیوار بتن مسلح و دیوارهای مرکب ممکن دیگر ، که تماما با یک قاب فولادی و یا با یک قاب مرکب تؤام هستند می شود .

3- دیوارهای برشی مصالح بنایی : از دیر زمان در ساختمانهای مصالح بنایی از دیوارهای مصالح بنایی توپر غیر مسلح استفاده می شده است ولی روشن شده است که این دیوارها از نقطه نظر مقاومت در مقابل زلزله ضعف دارند و لذا اکنون به جای آنها از دیوارهای برشی مسلح نظیر دیوارهای با آجر تو خالی و پر شده با دوغاب استفاده می شود .

 4-دیوارهای برشی بتن مسلح : نوع دیگری از دیواهای برشی ، دیوارهای برشی بتن مسلح است که در این مقاله به آن می پردازیم. یکی از مطمئن ترین روشها برای مقابله با نیروهای جانبی استفاده از دیوار برشی بتن مسلح است. دیوار برشی به عنوان یک ستون طره بزرگ و مقاوم در برابر نیروهای لرزه ای عمل می کند و یک عضو ضروری برای سازه های بتن مسلح بلند و یک عضو مناسب برای سازه های متوسط و کوتاه می باشد .

 

 انواع دیوار برشی بتن مسلح : دو نوع دیوار برشی بتن مسلح وجود دارد :

 1-دیوار برشی در جا : در دیوار برشی در جا به منظور حفظ یکنواختی و پیوستگی میلگرد های دیوار ، به قاب محیطی قلاب می شوند.

2-دیوار برشی پیش ساخته : در دیوار های برشی پیش ساخته یکنواختی و پیوستگی با تهیه کلیه های ذوزنقه شکل در طول لبه های پانل و یا از طریق اتصال پانلها به قاب توسط میخهای فولادی صورت می گیرد . تأثیر شکل دیوار : تعبیه بال در دیوارها برای پایداری و شکل پذیری سازه بسیار مفید می باشد  .  نیروهایی که به دیوارهای برشی وارد می شوند : به طور کلی دیوار های برشی تحت نیروهای زیر قرار می گیرند :

1-نیروی برشی متغیر که مقدار آن در پایه حداکثر می باشد .

2-لنگر خمشی متغیر که مقدار آن مجددا در پای دیوار حداکثر است و ایجاد کشش در یک لبه ( لبه نزدیک به نیروها و فشار در لبه متقابل می نماید ) با توجه به امکان عوض شدن جهت نیروی باد یا زلزله در ساختمان ، کشش باید در هر دو لبه دیوار در نظر گرفته شود.

3-نیروی محوری فشاری ناشی از وزن طبقات که روی دیوار برشی تکیه دارد .

توجه : در صورتی که ارتفاع دیوار برشی کم باشد ، غالبا نیروی برشی حاکم بر طراحی آن خواهد بود لیکن اگر ارتفاع دیوار برشی زیاد باشد لنگر خمشی حاکم بر طراحی آن خواهد بود . به هر حال دیوار باید برای هر دو نیروی فوق کنترل و در مقابل آنها مسلح گردد.

طراحی دیوار برشی در مقابل برش :

اگر Vu تلاش برشی نهایی در مقطع مورد طراحی باشد بر طبق آیین نامه ایران باید Vu=5υchd=φchd(fc)^0.5  تعیین نیروی برشی مقاوم نهایی بتن :

الف- حالتی که دیوار تحت اثر برش یا تحت اثر تؤام برش و فشار قرار دارد Vc=υcbwd:

ب- حالتی که دیوار تحت اثر برش و کشش فرار دارد : Vc=υc(1+Nu/(3Ag))bwd (A)

در این رابطه کمیت Nu/Ag بر حسب ( N/mm^2 ) می باشد و Nuدر این رابطه منفی می باشد حال اگر محاسبه نیروی برشی مقاوم نهایی بتن ( Vc) با جزئیات بیشتر مورد نظر باشد آنرا برابر با کمترین مقدار به دست آمده از دو رابطه زیر در نظر گرفته می گیریم و Vc=1.65υchd + (Nud)/(5Lw)

وVc=(0.3υc+(Lw(0.6υc+0.15Nu/(Lwh)))/(Mu/Vu-Lw/2))hd Nu

نیروی محوری برای فشار مثبت و برای کشش منفی است چنانچه Mu/Vu-Lw/2 منفی باشد رابطه A بکاربرده نمی شود . نیروی برشی مقاوم نهایی Vc برای کلیه مقاطعی که در فاصله ای کمتر از کوچکترین دو مقدار Lw/2 و hw/2 از پایه دیوار قرار دارند برابر با مقاومت برشی مقطع در کوچکترین این دو مقدار در نظر گرفته می شود .

نیروی برشی مقاوم نهایی آرماتور ها (Vs) از رابطه زیر محاسبه می شود Vs = φsAvfy d/S2 Av  سطح مقطع آرماتور برشی در امتداد برش و در طول فاصله S2 می باشد چنانچه مقدار Av را در اختیار نداشتیم می توان Vs را از رابطه زیر به دست آورد  Vs=Vu-Vc سپس به کمک رابطه فوق Av را به دست می آوریم . برای تأمین برش مقاوم Vsعلاوه بر آرماتور های برش افقی Av آرماتور های برشی قائم نیز باید در دیوار پیش بینی شود آرماتور گذاری در دیوار مطابق زیر انجام می شود :

 

چنانچه Vu=0.0025 فاصله میلگرد های (S2 ) از هم نباید از مقادیر زیر بیشتر باشد : ρn= 3h Lw/5 350سطح مقطع کل بتن در امتداد برش / سطح مقطع آرماتور برشی در امتداد عمود بر برش نباید کمتر از 0.0025 و یا کمتر از مقدار زیر در نظر گرفته شود : ρn=0.0025+0.5(2.5-hw/Lw)( ρh-0.0025) لزومی ندارد  ρn>ρh در نظر گرفته شود . طراحی دیوار برشی در مقابل خمش : چنانچه ارتفاع دیوار برشی بلندتر از دو برابر عمق آن باشد مقاومت خمشی آن مشابه تیری که آرماتور گذاری آن در لبه های آن متمرکز است محاسبه می شود .

مقاومت خمشی Mu یک دیوار برشی مستطیلی نظیر دیوار برشی این چنین محاسبه می شود : Mr=0.5AsφsFyLw(1+Nu/(AsφsFy))(1-C/Lw) در رابطه فوق : Mr مقاومت خمشی نهایی دیوار :Nu  نیروی محوری موجود در مقطع دیوار: As   سطح مقطع کل آرماتور های قائم دیوار Fy  : تنش تسلیم فولاد :  Qs  ضریب تقلیل ظریب فولاد Lw  : طول افقی دیوار مقدار C/Lw از رابطه زیر به دست می آید C/Lw=(w+α)/(2w+0.85β1) مقدار β 1 از روابط زیر به دست می آید : Fc=55 N/mm^2

β1=0.65، w=As/(Lwh)*(φsFy)/( φcfc) φs=0.85 φc=0.6 a=Nu/(Lw*h*φcfc) h

عرض دیوار : Fc  مقاومت فشاری بتن ابتدا با توجه به آرماتور های قائم حداقل که به علت نیازهای برشی در دیوار تعبیر شده اند ظرفیت خمشی مقطع را به دست می آوریم . همواره باید ظرفیت خمشی بزرگتر یا مساوی نیروی خمشی نهایی دیوار باشد.

 ( Mr>=Mu) چنانچه ظرفیت خمشی کمتر از نیروی خمشی دیوار به دست آید باید یا با کاهش فواصل یا افزایش قطر آرماتور های قائم مقدار As آنقدر افزایش یابد تا خمش بزرگتر از لنگر خمشی مقطع گردد . شکست برشی لغزشی : در شکست برشی لغزشی ، دیوار برشی به طور افقی حرکت می کند برای جلوگیری از این نوع شکست آرماتورهای تسلیح قائم که به طور یکنواختی در دیوار قرار گرفته اند مؤثر خواهد بود و تسلیح قطری نیز می تواند مؤثر باشد . در قسمت زیر انواع مودهای شکست یک دیوار برشی طره ای گفته شده است : الف ـ گسیختگی خمشی ب ـ شکست لغزشی ج ـ شکست برشی د ـ دوران پی دیوارهای برشی با بازشو ها: شکست برشی یک دیوار برشی با بازشو ها ، اگرچه می توان با به کار بردن مقدار زیادی خاموت باعث اتلاف انرژی شد اما نمی توان انتظار شکل پذیری زیادی از آن داشت بنابراین بهتر است در چنین شرایطی از تسلیح قطری استفاده کرد .

نکات اجرایی ساختمانهای اسکلت بتنی و فلزی

نکات اجرایی ساختمانهای اسکلت بتنی و فلزی

مزایا و معایب ساختمانهای فلزی

احداث ساختمان بمنظور رفع احتیاج انسانها صورت گرفته و مهندسین، معماران مسئولیت تهیه اشکال و اجراء مناسب بنا را برعهده دارند؛ محور اصلی مسئولیت عبارت است از:
الف ) ایمنی ب ) زیبائی ج) اقتصاد

با توجه به اینکه ساختمان های احداثی در کشور ما اکثرا" بصورت فلزی یا بتنی بوده و ساختمانهای بنایی غیر مسلح با محدودیت خاص طبق آئین نامه 2800 زلزله ایران ساخته میشود، آشنایی با مزایا و معایب ساختمانها می تواند درتصمیم گیری مالکین ، مهندسین نقش اساسی داشته باشد.


مزایای ساختمان فلزی:

1- مقاومت زیاد: مقاومت قطعات فلزی زیاد بوده و نسبت مقاومت به وزن از مصالح بتن بزرگتر است ، به این علت در دهانه های بزرگ سوله ها و ساختمان های مرتفع ، ساختمانهائی که برزمینهای سست قرارمیگیرند ، حائز اهمیت فراوان میباشد .

2- خواص یکنواخت : فلز در کارخانجات بزرگ تحت نظارت دقیق تهیه میشود ، یکنواخت بودن خواص آن میتوان اطمینان کرد و خواص ان بر خلاف بتن با عوامل خارجی تحت تاثیر قرار نمی گیرد ، اطمینان در یکنواختی خواص مصالح در انتخاب ضریب اطمینان کوچک مؤثر است که خود صرفه جو یی در مصرف مصالح را باعث میشود .

3- دوام : دوام فولاد بسیار خوب است ، ساختمانهای فلزی که در نگهداری آنها دقت گردد . برای مدت طولانی قابل بهره برداری خواهند بود .

4- خواص ارتجاعی : خواص مفروض ارتجاعی فولاد با تقریبی بسیار خوبی مصداق عملی دارد . فولاد تا تنشهای بزرگی از قانون هوک بخوبی پیروی مینماید . مثلآ ممان اینرسی یک مقطع فولادی را میتوان با اطمینان در محاسبه وارد نمود . حال اینکه در مورد مقطع بتنی ارقام مربوطه چندان معین و قابل اطمینان نمی باشد .

5- شکل پذیری : از خاصیت مثبت مصالح فلزی شکل پذیری ان است که قادرند تمرکز تنش را که در واقع علت شروع خرابی است ونیروی دینامیکی و ضربه ای را تحمل نماید ،در حالیکه مصالح بتن ترد و شکننده در مقابل این نیروها فوق العاده ضعیف اند. یکی از عواملی که در هنگام خرابی ،عضو خود خبر داده و ازخرابی ناگهانی وخطرات ان جلوگیری میکند.

6- پیوستگی مصالح : قطعات فلزی با توجه به مواد متشکه آن پیوسته و همگن می باشد و ولی در قطعات بتنی صدمات وارده در هر زلزله به پوشش بتنی روی سلاح میلگرد وارد میگردد ، ترکهائی که در پوشش بتن پدید می آید ، قابل کنترل نبوده و احتمالا" ساختمان در پس لرزه یا زلزله بعدی ضعف بیشتر داشته و تخریب شود .


7- مقاومت متعادل مصالح،مقاومت : مصالح فلزی در کشش و فشار یکسان ودر برش نیز خوب و نزدیک به کشش وفشار است .در تغییر وضع بارها، نیروی وارده فشاری ، کششی قابل تعویض بوده و همچنین مقاطعی که در بار گذاری عادی تنش برشی در انها کوچک است ، در بارهای پیش بینی شده ،تحت اثر پیچش و در نتیجه برش ناشی از ان قرار میگیرند. در ساختمانهای بتنی مسلح مقاومت بتن در فشار خوب ، ولی در کشش و یا برش کم است. پس در صورتی که مناطقی احتمالآتحت نیروی کششی قرار گرفته و مسلح نشده باشد تولید ترک و خرابی مینماید.

8- انفجار : در ساختمانهای بارهای وارده توسط اسکلت ساختمان تحمل شده ، از قطعات پرکننده مانند تیغه ها و دیواره ها استفاده نمی شود . نیروی تخریبی انفجار سطوح حائل را از اسکلت جدا می کند و انرژی مخرب آشکار میشود ، ولی ساختمان کلا" ویران نخواهد گردید . در ساختمانهایی بتن مسلح خرابی دیوارها باعث ویرانی ساختمان خواهد شد .

9- تقویت پذیری و امکان مقاوم سازی : اعضاء ضعیف ساختمان فلزی را در اثر محاسبات اشتباه ، تغییر مقررات و ضوابط ، اجراء و .... میتوان با جوش یا پرچ یا پیچ کردن قطعات جدید ، تقویت نمود و یا قسمت یا دهانه هائی اضافه کرد .

10- شرائط آسان ساخت و نصب : تهیه قطعات فلزی در کارخانجات و نصب آن در موقعیت ، شرایط جوی متفاوت با تهمیدات لازم قابل اجراء است .

11- سرعت نصب : سرعت نصب قطعات فلزی نسبت به اجراء قطعات بتنی مدت زمان کمتری می طلبد .

12- پرت مصالح : با توجه به تهیه قطعات از کارخانجات ، پرت مصالح نسبت به تهیه و بکارگیری بتن کمتر است .

13- وزن کم : ‌میانگین وزن ساختمان فولادی را می توان بین 245 تا 390 کیلوگرم بر مترمربع و یا بین 80 تا 128 کیلوگرم بر مترمکعب تخکین زد ، درحالی که در ساختمانهای بتن مسلح این ارقام به ترتیب بین 480 تا 780 کیلوگرم برمترمربع یا 160 تا 250 کیلوگرم برمترمکعب می باشد .

14- اشغال فضا :‌ در دو ساختمان مساوی از نظر ارتفاع و ابعاد ، ستون و تیرهای ساختمانهای فلزی از نظر ابعاد کوچکتر از ساختمانهای بتنی میباشد ، سطح اشغال یا فضا مرده در ساختمانهای بتنی بیشتر ایجاد میشود .

15- ضریب نیروی لرزه ای : حرکت زمین در اثر زلزله موجب اعمال نیروهای درونی در اجزاء ساختمان میشود ، بعبارت دیگر ساختمان برروی زمینی که بصورت تصادفی و غیر همگن در حال ارتعاش است ، بایستی ایستایی داشته و ارتعاش زمین را تحمل کند . در قابهای بتن مسلح که وزن بیشتر دارد ، ضریب نیروی لرزه ای بیشتر از قابهای فلزی است .


تجربه نشان میدهد که خسارت وارده برساختمانهای کوتاه و صلب که در زمینهای محکم ساخته شده اند ، زیاد است . درحالیکه در ساختمانهای بلند و انعطاف پذیر ، آنهائی که در زمینهائی نرم ساخته شده اند ، صدمات بیشتری از زلزله دیده اند . بعبارت دیگر در زمینهای نرم که پریود ارتعاش زمین نسبتا" بزرگ است ، ساختمان های کوتاه نتایج بهتری داده اند و برعکس در زمینهای سفت با پریود کوچک ، ساختمان بلند احتمال خرابی کمتر دارند.

عکس العمل ساختمانها در مقابل حرکت زلزله بستگی به مشخصات خود ساختمان از نظر صلبیت و یا انعطاف پذیری آن دارد و مهمترین مشخصه ساختمان در رفتار آن در مقابل زلزله ، پریود طبیعی ارتعاش ساختمان است.



معایب ساختمانهای فلزی:

1- ضعف در دمای زیاد : مقاومت ساختمان فلزی با افزایش دما نقصان می یابد . اگر دکای اسکلت فلزی از 500 تا 600 درجه سانتی گراد برسد ، تعادل ساختمان به خطر می افتد .

2- خوردگی و فساد فلز در مقابل عوامل خارجی : قطعات مصرفی در ساختمان فلزی در مقابل عوامل جوی خورده شده و از ابعاد آن کاسته میشود و مخارج نگهداری و محافظت زیاد است .

3- تمایل قطعات فشاری به کمانش : با توجه به اینکه قطعات فلزی زیاد و ابعاد مصرفی معمولا" کوچک است ، تمایل به کمانش در این قطعات یک نقطه ضعف بحساب می رسد .

4- جوش نامناسب : در ساختمانهای فلری اتصال قطعات به همدیگر با جوش ، پرچ ، پیچ صورت میگیرد . استفاده از پیچ و مهره وتهیه ، ساخت قطعات در کارخانجات اقتصادی ترین ، فنی ترین کار می باشد که در کشور ما برای ساختمانهای متداول چنین امکاناتی مهیا نیست . اتصال با جوش بعلت عدم مهارت جوشکاران ، استفاده از ماشین آلات قدیمی ، عدم کنترل دقیق توسط مهندسین ناظر ، گران بودن هزینه آزمایش جوش و ...... برزگترین ضعف میباشد.

تجربه ثابت کرده است که سوله های ساخته شده در کارخانجات درصورت رعایت مشخصات فنی و استاندارد ، این عیب را نداشته و دارای مقاومت سازه ایی بهتر در برابر بارهای وارده و نیروی

مبحث «درزها» در کفسازی

مبحث «درزها» در کفسازی

1- پیش گفتار

عملکرد پوشش های بتنی تا حد زیادی به عملکرد رضایت بخش درزهای آنها بستگی دارد. طراحی محل درزها که در واقع همراه با پیش بینی محل ترک خوردگی می باشد، نه تنها یک دانش کاربردی بلکه هنر ظریفی می باشد. دال های بتنی در معرض تغییر مکان های دائمی مختلف، از جمله تغییر مکان‌های ناشی از خشک شدن، انقباض و خزش می باشند. چنانچه در دال‌ها درزها به درستی تعبیه و طراحی نشوند نیروهای کششی ناشی از انقباض بتن باعث ترک خوردگی خواهد شد. مبحث ترک خوردگی در دال‌ها آنچنان مهم است که بعضی از معماران و مشتریان ترک های انقباضی را نشانة گسیختگی دال می پندارند. بتن نیز مانند سایر مصالج با تغییر حرارت و رطوبت انبساط و انقباض می یابد. این تغییرات حجمی می توانند باعث ایجاد ترک خوردگی شوند. پیش بینی محل ترک و تعبیة درز در آن نقطه، از تمرکز تنش و ترک خوردگی جلوگیری خواهد نمود. این درزها در واقع نیروهای به وجود آمده ناشی از تغییرات حرارتی و رطوبتی را باز توزیع و محو می نمایند. عدم وجود و یا کم تعداد بودن درزهای کنترلی باعث ایجاد ترک های نامرئی و البته مخرب می گردد.

اگر قرار باشد این درزها کارکرد ویژة خود را حفظ نمایند باید به درستی محل یابی و اجرا شوند. چنانچه اجزای یک مخلوط بتنی به درستی و به نحو یکنواختی با هم مخلوط شوند، حجم آن پس از اختلاط دارای بیشترین مقدار است. پس از این مرحله و همراه با تبخیر آب به علت حرارت محیط و نیز به سطح آمدن آب شرکت نکرده در واکنش، به علت پدیده مویینگی، کاهش حجم بتن آغاز می شود. این کاهش حجم برای رسیدن بتن از حالت اشباع به حالت خشک تقریباً معادل 66/0 به ازای هر 100 فوت می باشد. باید توجه داشت اغلب خود پدیدة انقباض علت اصلی ترک خوردگی نمی باشد بلکه علت اصلی آن، قیود انقباضی و شرایط مقید بودن بتن می باشد. وجود اختلاف ارتفاع در سطح بتن ریزی، جنس سطح بتن ریزی و وجود دیوار و یا دیگر موانع سازه‌ای همگی از عواملی هستند که در تعریف میزان مقید سازی سطح دخالت دارند. به طور کلی هر قیدی که باعث ایجاد تمرکز تنش در حین انقباض بتن شود، محرکی برای ایجاد ترک می باشد مگر آنکه با تعبیة درزهای مناسب از وقوع ترک خوردگی جلوگیری نمود.

2- انقباض ناشی از خشک شدن

همان طور که گفته شد، انقباض ناشی از خشک شدن یکی از عوامل مؤثر بر ترک خوردگی است. برای کاهش این انقباض می توان به موارد زیر توجه کرد:

  •         1- کاربرد نسبت آب به سیمان پایین تر

  •       2- کاربرد حداقل ذرات ریزدانه در مقایسه با ذرات درشت تر. این مقدار حداقل برای دستیابی به  کاراریی مناسب و خصوصیات ماله خوری بتن تعیین می شود.

  •         3- انتخاب دانه های خوب دانه بندی شده و تمیز

  •     4- کاربرد افزودنی های کاهندة آب به منظور کاهش نسبت آب به سیمان

  •     5- کاربرد بتن با اسلامپ پایین

  •         6- تراکم مناسب بتن

  •     7-     عمل آوری مناسب و پیوسته بتن بلافاصله پس از پرداخت سطح آن. این عمل ضمن آن که حصول به مقاومت مورد نظر را تسریع می نماید، ترک های انقباضی را نیز کاهش می دهد.

3- انواع درزها

       3-1- درزهای انبساطی یا جداسازی

در واقع این درزها در یک محل مشخص تعبیه می شوند تا دال حین انبساط و یا حرکت، به سازه های مجاورش صدمه نزند. هدف از کاربرد این درزها آن است که امکان حرکت آزادانه و مستقل قائم و افقی بین دال و سازه های مجاور بوجود آید. این سازه های مجاور می توانند دیوارها، ستون ها و پی ها و یا محل های بارگذاری باشند. حرکت و درجة آزادی این المان های سازه ای نسبت به المان های مجاور برروی دال به علت متفاوت بودن شرایط تکیه گاهی متفاوت می باشد. لذا اگر دال به صورت صلب به ستون ها یا دیوارها متصل شود، ترک خوردگی محتمل خواهد بود. درزهای جداسازی ممکن است از نوع درزهای انبساطی باشند. به طور کلی این نوع درزها می توانند مربعی شکل یا دایروی نیز باشند. (مثلاً در اطراف ستون) مزیت شکل دایروی آن است که در آن گوشه هایی که محل تمرکز تنش است، وجود ندارد. باید اذعان نمود که امروزه طراحی های خوب و نگهداری مناسب درزهای ساخت و ساز (اجرایی)، نیاز به طراحی درزهای انبساطی را مگر در اطراف اجزاء ثابت ساختمان از بین برده است. حرکت کف در طی زمان به تدریج درزهای انبساطی را می بندد و در نتیجه امر، ممکن است درزهای انقباضی مجاور باز شوند و درزگیرها و قفل و بست آنها دچار آسیب گردد.

عرض یک درز انبساطی به طور معمول 75/0 اینچ و یا بیشتر است. ابتدا در داخل درز به ارتفاع 75/0 تا 1 اینچ مصالح پرکننده ریخته می شود و بقیه آن با مصالح درزگیر پر می شود. میلگردهای dowel به کار رفته در درزهای انبساطی باید از یک طرف با یک غلاف  (cap) مجهز شوند به نحوی که در انتهای dowel فضای خالی ایجاد شود. این فضای خالی حرکت dowel را حین انبساط دال جذب می‌نماید. ممکن است گاهی اوقات درزهای آزاد کنندة فشار (pressure relief joint) با درزهای انبساطی اشتباه شوند. این درزها کارکردی شبیه به درزهای انبساطی دارند و تنها فرق آنها این است که آنها پس از ساخت اولیه کف و به منظور رها کردن فشار در مقابل سازه های دیگر و به منظور کاهش امکان بالقوه تخریب به وجود می آیند این درزها برای سازه های معمولی توصیه نمی شوند.

 

        3-2- درزهای ساخت و ساز (اجرایی)

این نوع درزها که به درزهای سرد نیز معروفند(cold soint) برخلاف 2 نوع درز دیگر به منظور تسهیل حرکت بتن و اجازة تغییر مکان آن ساخته نمی شوند بلکه معمولاً در پایان شیفت کاری یا روزکاری بالاجبار ساخته می شوند. البته نوع این درزها ممکن است بعدها به درزهای انقباضی یا درزهای طولی تبدیل شود.

 

3-3- درزهای کنترلی (انقباضی)

     تذکر: این درزها را "dummy joint" نیز می خوانند. این درزها محل ترک خوردگی ناشی از تغییر طول ابعاد دال بتنی را تنظیم می نماید به نحوی که ترک ها به محل درزها منتقل می‌شوند. این درزها برای کنترل ترکهایی است که از تنش های کششی ـ خمشی به وجود آمده در بتن ناشی می‌شوند. این تنش ها خود ممکن است از عوامل مختلفی چون هیدراتاسیون سیمان، شرایط محیطی و بارهای عبوری استاتیکی و دینامیکی سرچشمه بگیرند. با توجه به آنکه تعداد این درزها زیاد است لذا اجرای آنها عملکرد بتن و کف پوش را به شدت تحت تأثیر قرار می دهد.

بند 2-2-5 در آیین‌نامه ACI 224.3R تصریح می کند که مرسوم است درزهای انقباضی در امتداد ردیف ستون ها اجرا شوند ولی به درزهای اضافی نیز نیاز می باشد. طراحی درزهای کنترلی که درزهای انقباضی نیز خوانده می شود در دال های پوششی و در مکان هایی نظیر پلاژها، پاسیوها، سواره روها و پیاده روها و پارکینگ ها نیازمند توجه به چند موضوع اساسی است. از جمله این موارد انقباض ناشی از خشک شدن در حین عمل آوری اولیه، curling ناشی از اختلاف انقباض در بالا و پایین دال و تغییر مکان های حرارتی دال می باشند. به طور کاملاً تقریبی می توان گفت، بتنی با اسلامپ حدود 8 سانتیمتر به ازای هر 100 فوت طولی به اندازة 6/0 اینچ  انقباض خواهد داشت. ویژگی درزهای کنترلی خوب طراحی شده آن است که ترک ها را دقیقاً به محل درز منتقل کرده و نقطة دیگری برروی دال ترک نخواهد خورد.

به طور کلی ویژگی های یک درز کنترلی (انقباضی) مناسب عبارت است از:

  •    1- درزی که به دال اجازة‌ دهد آزادانه منقبض شود.

  •    2- اختلاف تغییر مکان عمودی دو طرف درز را محدود نماید.

  •   3- توانایی انتقال برش از میان درز را داشته باشد.

  •  4- توانایی ساخته شدن مطابق نقشة طراحی شدة قبلی را داشته باشد.

  •   5- هزینة آن به صرفه بوده و اجرای آن نیاز به مهارت بالای کارگری نداشته باشد.

  •   6- اجازه دهد که بتن ریزی به طور پیوسته انجام شود و زمان زیادی در حالت انتظار برای بتن ریزی پانل های نواری منفرد به هدر نرود.

4- نکات مربوط به طراحی درزهای انقباضی و فواصل درزها

  1. 1- بنا بر توصیة ACI (انجمن بتن آمریکا) و ACPA (انجمن پوشش های بتنی آمریکا) حداکثر فواصل درزها بین 24 برابر تا 36 برابر ضخامت دال می باشد. ACI تصریح می کنند این عدد برای بتن های با اسلامپ بالا (چنانچه حداکثر اندازة‌ دانه ها کمتر از 20 میلیمتر (ً 4/3) باشد) 24 برابر بوده ولی با کاهش اسلامپ بتن می توان فواصل درزها را تا 36 برابر ضخامت دال افزایش داد.

  2. حداکثر فواصل درزها به عدد 15 فوت محدود می شوند.

  3. پانل های تشکیل دهندة درزها باید حتی الامکان مربعی بوده و حداکثر نسبت طول به عرض آنها بنابر توصیة ACPA از 25/1 و بنابر توصیة ACI از 5/1 برابر، تجاوز نکند.

  4. بهتر است زاویة تقاطع درزها ْ90 باشد. باید از طراحی درزها با زاویة تقاطع کمتر از ْ60 جداً پرهیز نمود.

  5. عمق برش های زده شده در دا برای ایجاد درزهای انقباضی در جهت عرضی باید 4/1 ضخامت دال و در جهت طولی 3/1 ضخامت دال باشد. این عمق نباید کمتر از یک اینچ باشد.

  6. درزهای کم عرض‌تر اما با تعداد بیشتر نسبت به درزهای عریض‌تر اما با تعداد کمتر برتری دارند.

  7. در مورد پیاده روها فواصل این درزها معمولاً بین 5 تا 6 فوت می باشد. در مورد سواره روها، پاسیوها، پارکینگ ها به 15 فوت افزایش می یابد.

  8. زمانی که از بتن مسلح در کف های پوششی استفاده می شود. لازم است فقط نیمی از المان های تسلیح از محل درزها عبور نمایند. (این امر به ایجاد یک صفحة ضعیف در محل یاد شده و تبدیل آن به درز کمک می کند)

5- تعیین فواصل درزها بر مبنای توصیه fhwa (انجمن بزرگ راههای آمریکا)

        5-1- عوامل مؤثر بر تعیین درزها (مطابق نظر fhwa)

تعیین فواصل درزها به عوامل بسیاری بستگی دارد که می توان به موارد زیر اشاره کرد.

  •  هزینه های اولیه

  •    نوع دال (مسلح یا غیرمسلح)

  •     مکانیسم انتقال بار

  •     شرایط محلی

هر طراحی باید موارد زیر را در نظر داشته باشد.

  •   1- اثرات حرکات طولی دال بر مادة درزگیر و عملکرد ابزار انتقال بار

  •   2- حداکثر طولی از دال که در آن ترک های انقباضی ایجاد نمی شود.

  •   3- میزان ترک خوردگی که در یک پوشش بتنی مسلح قابل تحمل است. میزان تغییر طول دال در وهلة ‌اول تابع فاصلة‌ بین درزها و تغیرات حرارتی است.

  5-2- طراحی فاصله درز مطابق توصیه fhwa

خواص انبساطی دانه های به کار رفته در بتن و اصطکاک بستر و دال بر تغییر طول دال مؤثرند تغیر طول دال را می توان با فرمول زیر تقریب زد.

 تغییر طول مورد نیاز (اینچ)
 ضریب اصطکاک بستر (56/0 برای بسترهای تثبیت شده و 8/0 برای بسترهای دانه ای)
 طول دال (اینچ)
 ضریب انبساط حرارتی (جدول 2)
 حداکثر نوسان حرارتی (معمولاً از کم کردن دمای بتن در زمان بتن ریزی از درجة حرارت متوسط روزانة محل در ماه ژانویه (دی‌ماه) بدست می آید.)
 ضریب انقباض بتن (جدول 1)
در پروژه های مرمت و بازسازی به علت حذف پدیدة انقباض این ضریب حذف می شود.

 جدول 1 ـ ضرایب انقباض بتن

 

 مقادیر ضریب انقباض

 مقاومت غیرمستقیم (psi)

 ضریب انقباض

 (یا کمتر) 300 ,/tr>

0.0008

400

 0.0006

500

0.00045

600

0.00030

700

0.00020

 

 

 

 

 

 

 

 جدول 2ـ ضرایب انبساط حرارتی

 

(10-6/ ْF) ضرایب انبساط حرارتی برای سنگدانه

 کوارتز

6.6

 ماسه سنگ

6.5

 شن

6

 گرانیت

5.3

 بازالت

4.8

 سنگ آهک

3.8

 

 

 

 

 

 

 

اگرچه برای فواصل بین درزها مقدار حداکثر 15 فوت توصیه می شود ولی عوامل دیگری چون شرایط آب و هوایی و سختی بستر و ضخامت پوشش براین مقدار حداکثر فاصله که فراتر از آن باعث ایجاد ترک خوردگی در بتن می شود، تأثیر دارند. رابطه ای منطقی بین نسبت طول دال (L) به شعاع سختی نسبی و ترک خوردگی وجود دارد. شعاع سختی نسبی کمیتی است که توسط وسترگارد برای یافتن ارتباط بین سختی فونداسیون و سختی خمشی دال ارائه گردید:

(in) = شعاع سختی نسبی E = مدول الاستیستة‌ بتن h = ضخامت کف
= ضریب پوآسون کف پوش
k = ضریب عکس العمل خاک

با افزایش نسبت از 5 ترک های عرضی به شدت افزایش خواهد یافت لذا با محدود کردن به مقدار حداکثر فاصله درزها به دست می آید. این فاصله با افزایش ضخامت افزایش می یابد ولی با سخت تر شدن شرایط تکیه گاهی کاهش می یابد.

6- خواص ماده درزگیر

  6-1- توصیه ACI

مبحث 5-2-4-4 از ACI 302.1R در مورد درزگیری تصریح می کند که درزگیری برای تأمین اهداف زیر انجام می شود:

  • 1- مانع نفوذ آب به داخل بتن شود. این آب در فصول سرد یخ بسته و مشکلاتی پدید می آورد. همچنین باعث خوردگی فولاد می شود.

  •   2- بهبود عملکرد درز

  •   3- تسریع و تسهیل در تمیز کردن درز

ACI 302.1R توصیه می کنند که درزها در کف پوش های صنعتی که در معرض ترافیک چرخ های سنگین قرار دارند با مصالحی نظیر اپوکسی پر شوند. این مصالح باید تکیه گاه مناسبی برای درز بوده و در مقابل سایش مقاومت خوبی داشته باشند. لازم است مصالح پرکننده دارای سختی حداقل shore A 50 داشته باشند و کشش طولی آنها حداقل 6% باشد. پرکردن درزها بین 3 تا 6 ماه پس از ساخت درز انجام می شود. درزهای الاستیک پیش ساخته (performed elastic) در مواقعی به کار می روند که درز در معرض ترافیک چرخ های سخت و کوچک قرار نداشته باشد.

6-2- شکل درز و خواص درزگیر بنا به توصیه FHWA

§         1- هدف از کاربرد درزگیر جلوگیری از نفوذ آب و مصالح غیرقابل تراکم به داخل درز می باشد. اگر چه نتوان ورود آب را به طور کامل از بین برد، لاکم لازم است مقدار آن به حداقل برسد. نفوذ آب باعث تخریب درز می گردد. مصالح غیرقابل تراکم نیز از نزدیک شدن لبة درزها در حین انبساط دال جلوگیری کرده و به تخریب درز می انجامد.

§2- خواص مادة درزگیر، تأثیر بسزائی بر عملکرد درز خواهد شد. مواد درزگیر درجة بالا نظیر سیلیکون و درزگیرهای فشاری پیش ساخته برای درزگیری همة انواع درزها توصیه می شوند. از آنجا که این مصالح گرانتر هستند، طول عمر مفید بیشتری دارند.

§3- در مواردی که از سیلیکون به عنوان درزگیر استفاده می شود. یک ضریب شکل 1:2 توصیه می شود. حداکثر ضریب شکل نباید از نسبت 1:1 تجاوز نماید. برای نتایج بهتر، عرض حداقل درزگیر باید ً4/1 تا 375/0 اینچ پایین تر از سطح پوشش نهایی باشد به نحوی که سطح درز در معرض سایش ترافیک عبوری قرار نگیرد. لازم است در زیر ماده درزگیر و در کف درز از یک میلة تکیه گاهی استفاده شود تا ضریب شکل مناسب برای درزگیر حاصل گردد و در عین حال مادة درزگیر به کف درز نچسبد. این میله می تواند از جنس فوم پلی اورتان و دارای قطر تقریبی 25 درصد بزرگتر از عرض درز باشد.

§4- وقتی از درزگیرهای فشاری پیش ساخته استفاده می شود، درز را باید به نحوی طراحی نمود که درزگیر همیشه دارای کرنشی معادل 20تا 50 درصد باشد. سطح این مادة درزگیر لازم است 125/0 اینچ تا 375/0 اینچ پایین تر از سطح روکش نهایی باشد تا از ترافیک عبوری در امان باشد.

7- طراحی عرض درز بر مبنای توصیه SPEC

7-1- طراحی درزهای حرکتی در دال ها

§         1- ضریب جذب (تغییر طول) : میزان حرکتی است که مادة درزگیر الاستومریک بدون آسیب زدن به مادة پوش دهنده تحمل می کند و معمولاً بر حسب درصدی از عرض درز و یا یک کسر بیان می شود.

§         2- ضریب انبساط حرارتی خطی: مصالحی نظیر فولاد، شیشه و آجر و بتن دارای ضرایب انبساط حرارتی کوچک هستند در حالتی ضریب انبساط آلومینیوم حدود 2 برابر آنهاست. بعضی از مصالح مثل چوب و سنگ در جهات مختلف دارای ضرایب مختلفی هستند. تذکر: در موقع محاسبة انبساط باید تغییر حرارت خود جسم و نه محیط اطراف بررسی شود. به طور مثال ممکن است دمای محیط در کویت در تابستان cْ 50 گزارش شود درحالیکه مثلاً دمای بتن به cْ 75 رسیده باشد.

  7-2- محاسبه عرض ترک کل تغییر طول= L × B × Tr + کل تغییر طول= عرض ترک

 

 جدول 3- ضرایب انبساط حرارتی

 مصالح

 ضریب انبساط حرارتی

 آجر رسی

  5.0

 بتن 

 11.7

 فولاد سازه ای

 12.1

 شیشه

 9.1

 صفحات اکریلیک

90 - 70

 

 

 

 

 

8- انتقال بار از میان درز

8-1- قفل و بست دانه ها

قفل و بست دانه ها از اصطکاک برشی در وجوه نامنظم ترک شکل گرفته در محل برش زده شده تأمین می گردد. آب و هوا و سختی دانه ها بر بازدهی انتقال بار مؤثرند. با کاربرد دانه های سخت تر. بزرگ، با دوام و گوشه دار می توان این بازدهی را افزایش داد. بسترهای تثبیت شده نیز می تواند بازدهی انتقال بار افزایش دهند. با این حال با افزایش عرض ترک اعمال و بارهای دینامیکی قفل و بست دانه ها کاهش می یابد. لذا توصیه می شود که حساب کردن روی قفل و بست دانه ها در مواردی صورت پذیرد که ترافیک عبوری سبک باشد. برای استفاده از قفل و بست عرض ترک باید به 0.04 اینچ محدود شود، دانه های خرد شده و نیز دانه بندی درست بهتر می تواند بار را منتقل نماید. (ACI 302.1R)

 8-2- dowel bars

توصیه می شود قطر حداقل dowel bar ها ، D/3 باشد که D ضخامت پوشش می باشد. با این حال، قطر dowel نباید کمتر از اینچ باشد. همچنین توصیه می شود که dowelهای با طول َ18 در فواصل َ12 به کار روند. این dowel ها باید در نصف عمق دال قرار گیرند. عملکرد dowelها، ترکیبی از عملکرد برشی و خمشی خواهد بود. Dowel ها باید موازی یکدیگر و موازی طول دال کار گذاشته شوند. برای آنکه dowelها  بتنواند، آزادانه حرکت افقی داشته باشد، در حداقل یک طرف درز نباید به بتن بچسبد و لازم است در داخل غلاف (cap) قرار گیرد. تنها باید از dowel های مسطح استفاده نمود. برای جلوگیری از چسبیدن dowel می توان آنها را چرب نمود یا روکش کرد.     (ACI 302.1R) علت این مسأله را این گونه بیان می‌کند که 2 دال بتوانند مستقل از هم حرکت کنند و تنش های کمتری ایجاد شود. تنها یک پوشش روغنی نازک برای این منظور کافی است زیرا پوشش ضخیم تر باعث ایجاد حفرات در اطراف dowel می شود.

9- روشهای ساخت درزها

9-1- روشهای ساخت درزها

سه روش عمده برای ساخت درزها عبارتند از:

  • 1- قرار دادن (control – joint products) در داخل بتن در حین زمان بتن ریزی

  • 2- استفاده از شیارزن دستی در بتن تازه ریخته

  •  3- برش بتن پس از گیرش ابتدایی

از مزایای کاربرد (C.j.P) در طی بتن ریزی آن است که همزمان با انقباض بتن درزها به وجود آمده و به کار می‌افتد. از مشکلات استفاده از (C.j.P) اجرای آن است زیرا صاف نگه داشتن لبة آنها و قرارگیری مناسب آنها نیاز به مهارت ویژه ای دارد. از مزایای ایجاد درزها در بتن تازه ریخته شده، آن است که به محض آنکه نیروهای انقباضی به وجود می آیند این درزها نیز به کار می افتند ولی اجرای آنها دشوار می باشد. کارگران باید دقت کافی به خرج دهند که عمق شیار حداقل 25/0 ضخامت لایه باشد. اما اگر از روش برش بتن (که گیرش اولیه یافته است) استفاده شود می توان در طرح درزبندی دقت مناسبی اعمال کرد و لایه را تا عمق مورد نظر برش داد. در این روش باید زمان برش را به دقت تنظیم نمود چون در صورت تأخیر ممکن است، ترک خوردگی هرچند نامرئی در بتن آغاز شود. بر مبنای توصیة ACI زمان برش زدن به 3 عامل بستگی دارد:

  • 1- قبل از آنکه بتن سرد شود.

  •  2- به محص آنکه سطح بتن به آن اندازه سفت شود که تحت اثر پره ها آسیب نبیند.

  • 3- قبل از آنکه ترک های تصادفی و انقباضی در بتن ظاهر شود.

        9-2- انواع روشهای برش

  • 1- early entry cut dry cut بین 1 تا 4 ساعت پس از پرداخت سطح انجام می شود. عمق آنها از saw-cuting کمتر است ولی حداقل 1 اینچ می باشد.

2- Saw – cuting بین 4 تا 12 ساعت پس از پرداخت سطح بتن انجام می شود.

 9-3- نکات مربوط به برش زدن بتن

در مورد برش زدن دالهای بتنی توجه به نکات زیر الزامی است:

 §1- برش درزهای انقباضی و طولی شامل یک عملیات 2 مرحله ای است. در مرحلة اول در محل از پیش تعیین شده، ترک ایجاد خواهد شد. عمق آن باید کافی بوده و با پره ای به عرض 125/0 اینچ برش زده شود. برش مرحلة‌ دوم ضریب شکل مورد نیاز برای مادة درزگیر را تأمین می نماید. این مرحله را می توان هر زمانی قبل از درزگیری انجام داد. توصیه می شود در فواصل زمانی منظم قطر پره اندازه گیری شود.

 §2- تعیین زمان انجام برش اولیه چه در مورد درزهای عرضی و چه درزهای طولی در جلوگیری از وقوع ترک های انقباضی غیرقابل کنترل بسیار تعیین کننده است. زمان آغاز عملیات زمانی است که از یک طرف بتن به اندازه کافی سخت شده باشد که بتواند وزن ابزار برش را تحمل نماید و هم اینکه از Ravelling در طی عملیات برش جلوگیری نماید.

 §3-  تمام درزها را باید در طی 12 ساعت پس از بتن ریزی برش داد. برش بتن ساخته شده برروی بستر قدیمی باید زودتر انجام شود. این مسأله در شرایط هوای گرم بحرانی تر می باشد. عملیات برش پس از آغاز باید به صورت پیوسته ادامه یابد و تنها در صورت آغاز Ravelling متوقف شود.      

 §4- برای درزهای انقباضی عرضی، برش اولیه D/3 توصیه می شود (به خصوص اگر ضخامت دال بیشتر از ً10 باشد). تحت هیچ شرایطی نباید عمق کف کمتر از D/4 باشد. درزهای انقباضی عرضی باید در مرحله اولیه به طور متوالی برش داده شوند. ابعاد درزها به جنس و خواص مصالح درزگیر و تغییر طول بتن ستگی دارد.

 §5- برای درزهای طولی، یک برش اولیه حداقل به عمق D/3 لازم است. حداکثر عمق برش باید مقداری باشد که به آرماتورها و میل مهارها صدمه ای نرسد. لازم است برش نهایی حداقل عرض 375/0 اینچ و عمق یک اینچ داشته باشد.

 §6- درسالهای اخیر از اره های موتور الکتریکی یا بنزینی مجهز به قطعات سایندة نشکن و یا تیغه های مته الماسی برای برش استفاده شده است. تیغه مته الماسی سطح را چنان به سرعت برش می دهد که مانع از آسیب دیدن و ترک خوردن آن توسط عمل برش می شود.

 § 7- پرة شیاز زن معمولاً V شکل بوده و از جنس فلز به طول ً6 و عرض ً3 تا ً4 ساخته می شوند. شکل V شکل آنها به این خاطر است که از پوسته شدن بتن در محل فشار پره و سوراخ کردن جلوگیری شود.

 § 8- به منظور مؤثر کردن عملکرد درزهای انقباضی توصیه می شود که عمق آنها حداقل 75/0 اینچ و در حالت ایده‌آل یک اینچ باشد.

 §9- درزهای ساخت شده با روش برش زدن باید یکنواخت بوده و لبه های آن صاف و تیز باشد.

 §10- در این روش برای خنک کردن پره ها لازم است از جریان مداوم آب به اندازة تقریبی 5/2 گالون در دقیقه استفاده شود.

  §11- چنانچه در دال بتنی از شبکه سیمی استفاده شده باشد باید آنها را در مکان های درزهای انقباضی قطع کرد. البته این شبکه مانع از ترک خوردگی نمی شود ولی ترک ها را به هم نزدیک می سازد.

در صنعت ساختمان

با زیاد شدن جوامع بشری و ایجاد ساختمانها و برجهای بلند و آسمان‌خراشها درمناطق مرتفع و تحولات شگرد در صنعت‌ ساخت و ساز، تکامل و پیشرف دراین صنعت بوجود آمده و همچنین رشد روزافزون و سریع تکنولوژی، ارایه و ابداع روشهای جدید در صنایع می‌توان از تحدید خطرات و حوادث طبیعی گوناگون در محیط فعالیت زندگی ما (محیط کار، منازل و ...) بطور کلی در همه ‌جا جلوگیری کنیم.

خطراتی که بر اثر ساخت و ساز درمناطق مرتفع ساختمانها راتحدید می‌کند مهندسان و کارفرمایان را متوجه این حوادث و صدمات کرده که با هماهنگی متخصصان روبه کاهش است. این واقعیت را نمایانگر می‌سازیم که نیاز شدید و اصولی به فراگیری و رعایت کامل ایمنی و حفظ ساختمانها در مناطق مرتفع را داریم تا خود و دیگران را در برابر این همه خطرات و سوانح طبیعی حفظ کنیم واین معلومات و راه و روش صحیح برای پیشگیری و چاره‌اندیشی را فرا گیریم که از این حوادث طبیعی (صاعقه) جان سالم بدر ببریم.


صاعقه چیست و چگونه بوجود می‌آید؟

صاعقه یکی از اصرارآمیز‌ترین پدیده‌های خلقت است که در عین زیبایی بسیار مخرب بوده و در طول تاریخ زندگی انسان، موجب ضرر و زیان مالی و جانی بسیاری شده است صاعقه از تخلیه الکترواستاتیکی میان ابر و زمین بوجود می‌آید. در ابرهایی از نوع کومولونیمبوس (که گاه تا ۱۸ کیلومتر ارتفاع و چندین کیلومتر عرض دارند) طی مراحلی ذرات آب دارای بار منفی و ذرات یخ دارای بار مثبت شده بطوری که (عموماً) بارهای منفی در لایه‌های زیرین و بارهای مثبت در بخشهای فوقانی ابر متمرکز می‌شوند. در این حالت بارهای مثبت سطح زمین نیز، در زیر سایه ابر مجتمع می‌شوند.

با افزایش پتانسیل الکتریکی ابر نسبت به زمین، یک جریان پیشرو از الکترونها با حرکتی نردبانی شکل از ابر به سوی زمین (downward leader) سرازیر شده و کانال اولیه صاعقه را شکل می‌دهد. هوای اطراف این کانال کاملاً‌ یونیزه است این پلکان که گاه طول شاخه‌های آن به ۵۰ متر می‌رسد، بار زیادی را در نوک پلیکان با خود حمل کرده و موجب افزایش شدت میدان الکتریکی جو وشکست مقاومت عایقی هوا می‌شود. در این حالت سرعت حرکت کانال نزدیک شونده به زمین بیش از ۳۰۰km/s است. در این زمان با افزایش شدت میدان الکتریکی در سطح زمین، یک جریان الکتریکی بالا‌رونده (upward leader) نیز از زمین به سوی ابر پیش می‌رود پس از اصابت این دو پلیکان به یکدیگر، کانال جریان بسته شده و ضربه اصلی صاعقه (retum stroke) اتفاق می‌افتد و بدین ترتیب جهت خنثی بارهای ابر و زمین، جریان بسیار زیادی در مدت کوتاهی در این کانال برقرار می‌شود. صاعقه در انواع مختلف اتفاق می‌افتد که متداولترین آنها (۹۰ درصد) از نوع صاعقه منفی نزولی و خطرناکترین آنها نوع مثبت صعودی است.


صدمات

اصولاً بشر تا قبل از تجربه شخصی حدود سانحه، کمتر به دنبال علت وقوع آنها بوده است اما خسارات زیاد و مکرر از اثرات اولیه (ضربه‌های مستقیم) و ثانویه (میدانهای الکترومغناطیسی) صاعقه امروز به حدی رسیده است که توجه و راهکارهای جدی را می‌طلبد شاید اولین دلیل بروز این حوادث، عدم آگاهی از روشهای صحیح حفاظت است مضافاً اینکه اغلب بدلیل ادعاهای واهی برخی فروشندگان صاعقه‌گیر تصور می‌شود که داشتن یک صاعقه‌گیر در خارج ساختمان (که تنها از وقوع جرقه و تخریب فیزیکی ساختمان جلوگیری می کند) می‌تواند کلیه تجهیزات برقی و الکترونیکی داخل ساختمان رانیز حفاظت کند، در صورتی که چنین نیست.

ظرف ده سال گذشته استانداردهای جهانی به ما این امکانات را داده‌اندکه طراحیهای مناسبی با رعایت اصول قوانین emc انجام دهیم. امروزه وسایل و تجهیزاتی که برای یک زندگی ساده تدارک دیده شده پر از مدارهای الکترونیکی است. وسایل خانگی، کامپیوتر، فاکس، بی‌سیم، تلویزیون، تلفن، شبکه‌های اطلاعاتی جهانی،‌همه و همه از مدارهای الکترونیکی ساخته شده‌اند که گران بوده و تعمیرات آنها نیز آسان نیست و گاهی از خط خارج شدن آنها مصادف با خسارتهای غیرقابل جبران است.

عواملی را که می‌توانند شدیداً تجهیزات نامبرده بالا یا بطور کلی هر وسیله دیگری را که مدارهای الکترونیکی در آنها به کار رفته باشد به خطر انداخته یا غیرقابل استفاده کنند، عبارتند از:


کوپلاژ مقاومتی

وقتی که صاعقه به ساختمانی ضربه می‌زند جریانی که به زمین تخلیه می‌شد پتانسیل زمین را در سیستم‌های برق و دیتا، تا چند صد کیلوولت افزایش می‌دهد. این امر موجب می‌شود بخشی از جریان صاعقه از طریق هادیهای ورودی- خروجی، به ساختمانهای دیگر منتقل شود.


کوپلاژ سلفی (مغناطیسی(

عبور جریان صاعقه از یک هادی و یا از کانال تخلیه خود، ایجاد یک میدان مغناطیسی می‌کند. وقتی که خطوط میدان، هادیهایی را که تشکیل لوپ داده‌اند قطع کند، در آنها ولتاژی معادل چند ده کیلوولت القاء می‌شود.


کوپلاژ خازنی (الکتریکی(

کانال صاعقه در نزدیکی نقطه تخلیه، یک میدان شدید الکتریکی ایجاد می‌کند. کابلها و هادیها مانند خازن و هوا نیز عایق دی‌الکتریک آنهاست. بدین صورت علیرغم عدم برخورد صاعقه به ساختمان کابلها تحت یک ولتاژ بالا قرار می‌گیرند.


اصول حفاظت از صاعقه

حفاظت یک ساختمان بطور کامل شامل موارد زیر می‌شود:

حفاظت جلد خارجی ساختمان از ضربه‌های مستقیم صاعقه.

حفاظت داخلی و تجهیزات نصب شده در ساختمان در مقابل آثار ثانویه صاعقه

الف- حفاظت جلد خارجی ساختمان

منظور از حفاظت خارجی، حفظ بدنه و استراکچر ساختمان از آتش‌سوزی و انهدام در اثر اصابت صاعقه است. کلیه تجهیزاتی که جهت جذب وهدایت صاعقه از پشت بام تا شبکه زمین نصب می‌شوند طبق استاندارد BS۶۶۵۱, NFC۱۷-۱۰۲, NFC۱۷-۱۰۰, DINVDEO۱۸۵ و NFPA۷۸۰ و IEC۶۱۰۲۴ شناسایی می‌شود.

ب- حفاظت تجهیزات نصب شده در داخل ساختمان

توسعه کاربرد سیستمهای الکترونیکی درجهان، موجب افزایش شدید آمار صدمات وارده به این دستگاهها در اثر صاعقه و اضافه ولتاژهای ناشی از آن شده است. لازم به ذکر است که تنها بخشی از اضافه ولتاژها در اثر صاعقه بوده و بخش عمده آنها ناشی از عملیات سوئیچینگ و حوادث تغذیه است. برای این بخش از حفاظت، کاهش اثر میدانهای الکترومغناطیسی ناشی از صاعقه، مدنظر قرار می‌گیرد.

پس از برخورد صاعقه به زمین یا ساختمان، وسایل الکترونیکی داخل ساختمانهایی که شعاع ۱/۵ کیلومتری از محل برخورد و در محدوده میدان الکترومغناطیسی ایجاد شده قرار دارند در معرض خطر خواهند بود.

حفاظت موثر این تجهیزات در مقابل ولتاژهای القایی حاصله وقتی امکان‌پذیر است که کلیه سیستمهای حفاظت داخلی همراه با حفاظت خارجی ساختمان تماماً نصب شده باشند.

حفاظت داخلی از صاعقه عبارت است از تهیه وسایلی که به کمک آنها بتوان اثر ولتاژهای القائی حاصله از جریان‌های صاعقه را، بر روی تجهیزات داخل ساختمان خنثی کرد.


برق‌گیر یا رسانای آذرخش

برق‌گیری یا رسانای آذرخش، ساختمان‌های بلند را از یورش آذرخش (صاعقه) مصون می‌دارد. یک رسانای آذرخش ازیک نوار مسی کلفت تشکیل شده است که نوک‌های فلزی تیزی دارند و در بالای بلندترین قسمت ساختمان کار گذاشته می‌شود. این نوار را به تیغه فلزی بزرگی که در اعماق مرطوب زمین زیر ساختمان مدفون گشته است متصل می‌کنند.

این رسانا مسیری را برای شارش بار الکتریکی از بالای ساختمان به زمین فراهم می‌کند.

نشست تدریجی بار مثبت از نوکها (تخلیه الکتریکی از نوک‌های تیز بهتر انجام می‌شود) بسوی ابرها و شارش الکترونها از برق‌گیر به زمین، از انباشته شدن انبوه بار روی بلندترین بخشهای ساختمان جلوگیری می‌کند. اگر این تخلیه الکتریکی از نوکها و از طریق برق‌گیری صورت نگیرد تخلیه ناگهانی بار «آذرخش» صورت خواهد گرفت.

شارش ناگهانی و بسیار عظیم بار که آذرخش روی می‌دهد آن قدر انرژی دارد که می‌تواند خسارتهای جدی به ساختمان وارد کند.


راهنمای استفاده از LOM در شبکه زمین سطحی

- کانالی به عرض ۳۰-۲۰ سانتیمتر و عمق ۷۵ سانتی‌متر به طول مورد نظر حفر کنید. اگر عمق نفوذ یخ‌زدگی خاک بیشتر از ۷۵ سانتی‌متر باشد باید کانال عمیقتر و تا زیر لایه یخ‌زدگی حفاری شود کف کانال را به ضخامت ۱۰ سانتی‌متر از LOM مخلوط پر کنید.

- سیم یا تسمه مسی را روی این لایه بخوابانید.

- روی سیم را به ضخامت ۱۰ سانتی‌متر با مخلوط LOM بپوشانید مراقب باشید که هادی بطور کامل پوشانده شود و اگر هادی پوشانده نشد ضخامت LOM را افزایش دهید. بقیه کانال را با خاک پر کنید.

- با در نظر گرفتن حجم حفاری وشرایط فوق برای هر متر طول حداقل به سه کیسه LOM نیاز خواهد بود باتغییر ابعاد کانال یا ضخامت LOM مصرفی مقدار مورد LOM تغییر می‌کند.


راهنمای استفاده در نصب میله ارت (شبکه زمین عمودی(

- حفره‌‌های به قطر ۱۵-۲۵ سانتی‌متر و به عمق ۱۵ سانتی‌متر کمتر از طول میله ارت حفر کنید.

- میله ارت را در وسط حفره طوری بکوبید که سر میله ارت ۱۰ سانتی‌متر پایین‌تر از لبه حفره واقع می‌شود.

- مخلوط LOM را پیرامون میله تخلیه کنید و این کار را تا ۲۰ سانتی‌متر پایین‌تر از لبه فوقاتی میله ارت ادامه دهید.

- اتصالات لازم را به میله ارت انجام دهید بعد دریچه بازدید را نصب کنید و یا حفره را کاملاً پر کنید.

- در حین پر کردن حفره ضروری است هر یک متر که با LOM پر می‌شود مقداری از آب داخل حفره تخلیه شود این عمل فشردگی و چسبندگی لایه‌ها را به میله ارت افزایش می‌دهد.

- در این حالت برای هر متر عمق حفره بین یک تا سه کیسه LOM مورد نیاز است.


راهنمای استفاده در نصب صفحه مسی چاه ارت (شبکه زمین سنتی(

- حفره‌ای به قطر تقریبی ۵۰ سانتی‌متر به عمق مورد نیاز حفر کنید.

سیم ارت یا تسمه مسی را حداقل در دو نقطه توسط روش cadweld به صفحه متصل کنید.

- صفحه ارت را به صورت عمودی در انتهای حفره قرار دهید.

- مخلوط lom را در داخل چاه طوری تخلیه کنید که ضمن فشردگی مناسب تا ۲۰ سانتی‌متر بالای سطح صفحه را بپوشاند.

- برای پر کردن مابقی حفره lom را به نسبت یک به سه با خاک حفره یا خاک رس مخلوط کرده و حفره را با مخلوط فوق پر کنید.

- در صورت نیاز دریچه بازدید را نصب کرده و هادی بیرون آمده از چاه را با هادی سیستم زمین متصل کنید.

- برای فشردگی بیشتر خاک اطراف هادی صفحه و کیفیت مناسبتر پس از هر متر که با مخلوط lom پر می‌شود مقدار مناسب آب اضافه کنید.

برای پر کردن چاه ارت با مشخصات فوق در یک متر اولیه ۱۰ کیسه و برای هر متر بعد از آن برای مخلوط کردن با خاک حفره سه کیسه lom مورد نیاز است.

توجه ۱- اگر شبکه سطحی، حفره میله یا چاه ارت در مسیر حرکت سفره‌های آب زیرزمینی یا فاضلاب آب باران باشد باید کف آن توسط سیمان یا مخلوط سیمان و lom بتونه کاری شود که مخلوط حاضر توسط آب جاری شسته نشود.

توجه ۲- در جایی که مقاومت مخصوص خاک (P) کمتر از m۲۰ اهم باشد چنانچه قصد دارید lom را با خاک مخلوط و مصرف کنید مناسبترین نوع ترکیب از نظر تکنیکی و اقتصادی با نسبت حجمی به شرح زیر پیشنهاد می‌شود:

۶۰ درصد خاک

۳۰ درصد lom

۱۰ درصد آب

برای مخلوط کردن صحیح اقلام فوق باید موارد به ترتیب زیر با هم مخلوط شوند تا بهترین نتیجه از یک مخلوط یکنواخت حاصل شود.

اول lom، دوم خاک، سوم آب

توجه ۳- لطفاً عنایت فرمایید تاثیر نهایی مواد کاهنده بصورت فوری قابل حصول نیست و برای دسترسی به نتیجه قطعی باید بین یک تا شش ماه صبر و تحمل داشته باشید.

توجه ۴- بازدید و تست دوره‌ای سیستم زمین را فراموش نفرمایید نصب دریچه بازدید کار تست و بازرسی دوره‌ای را تسهیل می‌کند.

توجه ۵- محل اتصال الکتریکی سیستم زمین به شبکه ارت سطحی یا چاه ارت زیر زمین معمولاً به عنوان نقطه آزمایش سیستم در داخل دریچه بازدید قرار دارد محل تماس الکتریکی توسط نوار چسب عایق ضد خوردگی، خمیر هادی حفاظت شود

تخریب و اصلاح سطوح آسفالتی

 
 
برای تعمیر سطوح آسفالتی ابتدا باید عیب کار را تشخیص داد، مهمترین عیوب این سطوح عبارتند از:
ـ گودالها و حفره‌ها
ـ نشست آسفالت در اثر خرابی زیرسازی
ـ ترکهای آسفالت
ـ موج و شیارهای طولی و عرضیـ بیرون زدن شن از آسفالت (جدا شدن سنگدانه‌ها از آسفالت)
ـ رو زدن قیر
در قسمتهای بعد به طور اختصار به شرح چگونگی به وجود آمدن این معایب و روش اصلاح آنها مبادرت می‌شود.

24-2-2-1 گودالها و حفره‌ها

این گودالها در اثر عوامل زیر به وجود می‌آیند:

الف:  کافی نبودن کوبیدگی آسفالت

ب:   وجود نقاط ضعف در زیرسازی

پ:   کافی نبودن قیر در آسفالت

این گودالها خطری برای عبور و مرور به شمار می‌روند و اگر به فوریت مرمت نشوند، توسعه پیدا کرده و به علت نفوذ آب و سرایت رطوبت به زیرسازی و یخبندان، خرابیهای بزرگتری را موجب می‌شوند، از این رو باید به محض پیدایش گودال در محوطه، آن را لکه‌گیری نمود. نحوه عمل به ترتیب زیر است: ابتدا باید مصالح معیوب داخل گود را برداشت، اطراف گودال و کف آن باید تا حدودی که به قشر محکم و قابل قبول برسد، کنده شود، در صورتی که زیرسازی، معیوب و مرطوب باشد، باید مصالح آن را خارج کرد و مقطع آن را به شکل منظم هندسی درآورد و دیواره حفره را قائم ساخت. مصالح جایگزین قسمتهای کنده شده از جنس قشر اساس و ضخامت هر لایه حدود 5 سانتیمتر می‌باشد که به وسیله تخماق دستی کوبیده می‌شود. این زیرسازی را تا حدی بالا می‌آورند که از سطح آسفالت به اندازه ضخامت آسفالت موجود و یا 5 سانتیمتر (هرکدام بزرگتر باشد) پایین‌تر قرار گیرد.

پس از اینکه محل تعمیر شده تمیز و خشک شد، باید کف و اطراف آن را با قشر نازکی از قیر MC2 ضخامت قشر آسفالت و حداکثر 5 میلیمتر از سطح آسفالت مجاور بلندتر باشد تا بعداً زیر چرخهای سنگین وسائط نقلیه همتراز سطح آسفالت گردد. آغشته نمود، به قسمی که اتصال مخلوط لکه‌گیری را با کف و جدار گود تأمین نماید، در این مرحله اگر قیر اضافی به کار رود، بعداً از داخل مخلوط لکه‌گیری و کناره‌های آن به بیرون سرایت می‌کند، پس از آغشته شدن کف و جدار به ترتیب فوق، مخلوط لکه‌گیری را در داخل گودال می‌ریزند و بسته به وسعت آن به وسیله تخماق دستی، غلتک دستی و یا غلتکهای صفحه‌ای لرزان می‌کوبند. این مخلوط باید به اندازه‌ای در داخل گود ریخته شود که پس از کوبیدن به اندازه <!--[if !vml]--><!--[endif]-->

24-2-2-2 نشست آسفالت در اثر خرابی زیرسازی

در بعضی از نقاط که زیرسازی یا خاکریز جاده، خوب کوبیده نشده و یا برای عبور لوله‌های آب، گاز، کابل و نظایر آن، محل مذکور کنده شده ولی در بازسازی آن دقت نشده، بعداً در زیر ترافیک به تدریج متراکم می‌گردند و در نتیجه سطح آسفالت نشست می‌کند. نشست آسفالت ممکن است بدون ترک‌خوردگی باشد، ولی از آنجا که اختلاف سطح برای ترافیک ایجاد اشکال می‌کند، باید نسبت به مرمت آن اقدام نمود. در صورتی که نشست آسفالت خیلی زیاد و گسترده باشد، باید قشر آسفالت را تراشید و پس از پر کردن و کوبیدن زیر آن، مجدداً قشر آسفالت را تکرار نمود، ولی اگر شکست زیاد نباشد، باید آن را با مخلوط لکه‌گیری پیش‌ساخته، به نحوی که در مورد پر کردن گودالها گفته شد، پر نمایند.

24-2-2-3 ترکهای آسفالت

مهمترین ترکهای آسفالت عبارتند از:

ـ ترکهای طولی و عرضی

ـ ترکهای پوست سوسماری یا موزائیکی

ـ ترکهای جمع‌شدگی


روش مرمت هریک از ترکها، به اختصار به شرح زیر است:

الف:  ترکهای طولی و عرضی

       این ترکها همان طور که از نامشان پیداست، تقریباً به موازات محور راه و یا عمود بر آن ایجاد می‌شوند، علت ایجاد این ترکها جابه‌جایی زیرسازی، انقباض زیرسازی در سرمای شدید و یا تورم بعضی از مصالح به کار برده شده در خاکریز بدنه راه می‌باشد. هرگاه ترکهای طولی و عرضی عریض باشند و خطر نفوذ آب و ایجاد یخبندان در فصل زمستان محتمل باشد، باید فوراً آنها را با قیر MC2 پر نمود و روی آنها را با ماسه خیلی نرم و یا خاک سنگ پوشانید و پس از اینکه قیر جذب مصالح شد، ماسه‌های زائد را جارو نمود. قبل از ریختن قیر، باید داخل ترکها را از گردوخاک و مواد زائد پاک کرد، برای این منظور می‌توان از هوای فشرده و یا از برسهای مویی زبر استفاده کرد.

       باید دقت نمود که از مصرف قیر بیش از حد احتراز شود، در غیر این صورت قیرهای زائد در اطراف ترک پخش شده و پس از ریختن ماسه، سطحی ناهموار ایجاد می‌نماید.

ب:   ترکهای پوسته سوسماری یا موزائیکی

       این ترکها به صورت چند ضلعیهای کوچکی به شکل نقش روی پوست سوسمار ایجاد می‌شوند، در اکثر موارد علت موزائیکی شدن آسفالت، عدم مقاومت کافی قشرهای زیرین و یا عدم تکافوی ضخامت آسفالت است، برای ترمیم آنها باید آسفالتهای ترک خورده را برداشته و قشرهای زیرین را که اغلب آب در آنها نفوذ نموده است، بیرون آورد و با مصالح مرغوب زیرسازی پر کرد و خوب کوبید و پس از اجرای پریم‌کت با قیر MC2 با مخلوط لکه‌گیری پیش‌ساخته، به نحوی که در بند 24-2-2-1 گفته شد، آن را پر کرد.

پ:   ترکهای جمع‌شدگی

       این ترکها روی سطح آسفالت چند ضلعیهای بزرگی را تشکیل می‌دهند که به هم متصل هستند، علت به وجود آمدن آنها، بیشتر کمبود قیر در مخلوط آسفالت و یا شکنندگی نوع قیر مصرفی است و اصلاح این ترکها مانند ردیف «ب» می‌باشد.

ت:   ترکهای هلالی شکل

       این ترکها به علت عدم چسبندگی قشر آسفالت گرم به زیرسازی آن و یا در اثر نچسبیدن قشرهای آستر و رویه به یکدیگر، ایجاد و در نتیجه در اثر فشار افقی حاصله از حرکت چرخهای وسائط نقلیه ظاهر می‌شوند، برای مرمت این قبیل ترکها باید آسفالت اطراف ترک را آنقدر برداشت تا چسبندگی کافی بین آسفالت و سطح زیرین آن مشاهده شود و آنگاه گودال را برابر بند 24-2-2، آماده و با قیر MC2 پریم‌کت و سپس با مخلوط لکه‌گیری پیش‌ساخته، پر نمود و خوب کوبید.

24-2-2-4 موج و شیارهای طولی و عرضی

موج عبارتست از پستی و بلندیهایی که به شکل سینوسی و اکثراً به صورت یکنواخت و منظم در سطح آسفالت ایجاد می‌شوند. مهمترین علل ایجاد موج وجود قیر اضافی در مخلوط آسفالت، دانه‌بندی غیرصحیح مواد سنگی، وجود مصالح گردگوشه به مقدار غیر مجاز و بالاخره خوب کوبیده نشدن آسفالت است. شیار در سطح آسفالت به علت عدم وجود قیر کافی و یا دانه‌بندی ناصحیح مواد سنگی به وجود می‌آید. طریقه اساسی مرمت قسمتهای موجدار و شیاردار، کندن آسفالت و تجدید آن با رعایت مشخصات آسفالت است.

24-2-2-5 بیرون زدن شن از آسفالت

بیرون زدن شن از آسفالت عبارتست از جدا شدن تدریجی مواد سنگی از مخلوط آسفالت که علت آن کمبود قیر در آسفالت تهیه شده و یا حرارت زیاد در هنگام پخش آن می‌باشد. در صورتی که بیرون زدن شن جزئی باشد و معایب دیگری در سطح آسفالت مشاهده نشود، می‌توان با پخش لایه نازکی از قیر مایع MC2 بدون پخش مواد سنگی روی آن رفع عیب نمود، این طریقه را اصطلاحاً سیل‌کت ابری می‌نامند.

24-2-2-6 رو زدن قیر

این عیب در اثر وجود قیر زائد در مخلوط آسفالت به وجود می‌آید و در هوای مرطوب و بارانی سطح راه را لغزنده می‌سازد و برای ترافیک خطرناک است، برای مرمت آن می‌توان در فصولی که هوا گرم است با پخش سنگ شکسته و یا ماسه دانه‌بندی شده روی سطح آسفالت و کوبیدن آن به دفعات توسط غلتکهای سنگین، قیرهای زائد را جذب نمود، هرگاه مقدار قیر بیرون زده خیلی زیاد باشد و یا هوا کاملاً گرم نباشد، باید سطح آسفالت را خراشید و مقداری سنگ شکسته به آن اضافه نمود و آن را خوب کوبید.

عوامل موثر در انتخاب نوع آسفالت چیست؟

 
 
عوامل موثر در انتخاب نوع آسفالت چیست؟
نوع روکش و آسفالت را می توان به سادگی با توجه به حجم ترافیک شهری در خیابان و نوع خاک انتخاب نمود اما گاهی انتخاب روکش آسفالت آنقدر پیچیده می شود که باید با توجه به تحقیقات وپژوهش های سنگین صورت گرفته و فاکتور های مهم و وزین مانند چرخه هزینه زندگی انتخاب کرد. هر گاه که در انتخاب از متدولوژی استفاده شود باید سبک انتخاب شده عینی، منطقی، علنی، قابل توضیح و مهم تر از همه این که بهترین معیار برای پرداخت کننده مالیات را در بر داشته باشد.

بسیاری از آژانس های سازنده بزرگراه های ایالات متحده امریکا درصددند تا روند روکش کردن خیابان ها را مورد بررسی و بازبینی قرار دهند تا نسب به رعایت اصول و الگوهای آسفالت کاری مطمئن شوند. در برخی از ایالات تصمیم گیری در این خصوص فقط بر عهده سازمان مرکزی است و در برخی دیگر به سازمان ها و ادارات زیر مجموعه نیز تفیذ اختیار شده است.

روکش کردن خیابان ها کاری بسیار دشوارتر از آسفالت کردن مسیر درب منزل تا پارکینگ اتومبیلتان است. اما آسفالت کردن خیابان ها با این نوع آسفالت بسیار متفاوت است چرا که آسفالت مطلوب می بایست در برابر ترافیک و عبور و مرور سنگین اتومبیل ها و بدی شرایط آب و هوایی بسیار مقاوم بوده و از نظر همواری به گونه ای باشد که بتوان بر روی آن هاکی بازی کرد.

همچنین اگر عمل آسفالت کردن خیابان ها به خوبی صورت گرفته و از آن به خوبی محافظت شود جذابیت خاصی را به خیابان ها و خانه ها ومغازه ها می بخشد. به همین جهت است که طراحان و مهندسین با استفاده از خلاقیت خود تغییرات جالبی را در رنگ و الگوی آسفالت کاری پدید آورده اند. باید از آسفالت خیابان ها طوری محافظت شود که در زمستان ها در اثر برف و یخبندان آسیبی نبیند و در تابستان هم آلودگی و کثیفی بر آن تاثیر گذار نباشد. اگر آسفالت این گونه باشد بدیعی است که مقرون به صرفه، بادوام و دائمی خواهد بود و همچنین نگهداری از آن نیزراحت تر می باشد.

برای تحقق این امر سه فاکتور اساسی وجود دارد که عبارتند از:

1)طراحی مناسب

2)استفاده از مصالح و مواد مرغوب

3)اجرای صحیح عملیات ساخت و زیرسازی ومهمتر از آن نظارت صحیح

تاثیر طراحی مناسب چیست؟

اگر طراحی دقیق و مناسب باشد می توان گفت که خیابان آسفالت شده تا 20 سال به همان صورت اولیه و بدون مشکل باقی می ماند.

شالوده: جاده از زمین و خاک درست شده است پس می بایست کار زیرسازی آن را با استفاده از مواد جامد شروع کرد.

*زیرسازی خیابان می بایست هموار، قرص و محکم باشد و در بستر حمل و نقل شهری واقع شود. به هیچ عنوان استفاده از تن مایه های گیاهی و حیوانی و خاک های سطحی در زیرسازی تجویز نمی گردد.

*حدود 6 تا 8 میلیمتر از سطح بالایی زیرسازی باید با سنگ ریزه های زبر و در عین حال متراکم پر شود.

*برای عریض سازی و زیرسازی دوباره خیابان باید مجددا عملیات زیرسازی با سنگ ریزه ها صورت گیرد تا زه کشی محل اجرا با اطمینان بیشتری انجام شود.

روکش کردن: آنچه می بینیم و به نظر مناسب می آید ملزوما مطلوب نیست. به عنوان مثال اگر روکش خیابان در نظر صاف و هموار می آید دلیل بر مطلوب بودن و مناسب بودن آن نیست. در واقع آنچه فاکتور اصلی در مطلوب بودن آسفالت مد نظر است تراکم و ضخامت آسفالت اجراییاست.

*راههای ورودی و اختصاصی به کمترین تراکم ضخامت یعنی چیز در حدود 50 میلیمتر آسفالت مخلوط گرم نیازمند است.

*ضخامت هر لایه آسفالت معمولا سه چهارم ضخامت آسفالت نرم و مخلوط و گرم است. پیمانکار می بایست در قراردادش میزان ضخامت و تراکم روکش را بطور دقیق ذکر کند تا ابهامات در این مورد از بین رفته و از هر گونه کارشکنی ممانعت به عمل آید.

*برای اینکه دوام آسفالت بیشتر شود بهتر است که 50 میلیمتر به زیرسازی و 40 میلیمتر به لایه های رویی و سطح خیابان اختصاص یابد.

زه کشی: هنگامیکه آب بر آسفالت ها جاری می شوند و از مسیر خانه ها روان شده و از زیر سازی آسفالت عبور می کنند، تهدید کننده است.

*روکش خیابان ها باید دارای شیب باشد_در شیب گذاری گذاشتن شیب یک چهارم اینچ در هر 5/30 معمول است.(2 سانتی متر متر برای هر یک متر عرض(

*زه کشی زیر زمینی لزومی ندارد.

*برای هر 30 متر از خیابان ارتفاع شیب می بایست 460 میلیمتر باشد.

*زهکشی باید از ساختمان ها فاصله داشته باشد و نباید اجازه داد تا آب در لبه آسفالت خیابان جمع شود.

چرا استفاده از مواد و مصالح مرغوب

*در خیابان ها که نیروی زیادی بر آن وارد نمی شود همان آسفالت HMA سنتی مناسب است. در بیشتر موارد HL-8 مخلوط برای زیرسازی (به اندازه 19 میل متر) این قبیل خیابان ها استعمال می شود. در زیرسازی جاده های خارج از شهر و پارکینگ ها می توان از HL-3 (به اندازه 5/12 میلیمتر) برای بخش های سطحی استفاده نمود. برخی عقیده دارند که استفاده از HL-3 و یابه اندازه 5/12 میلی متر) به روکش و آسفالت دوام بیشتری می بخشد. HL-3A (

*مطمئن شوید که پیمانکار پروژه آسفالت را از تولید کنندگان مجاز و معتبر تهیه کرده است تا از کیفیت پروژه کاسته نشود.

اجرای صیحیح عملیات اجرایی

*زیرسازی می بایست هموار و محکم باشد. پیمانکار باید مناطقی که خاک سست و نرم دارند را با مواد متراکم و چگال جایگزین سازد این مورد نقش تعیین کننده ای دارد.

*در مناطقی که خانه های جدیدی ساخته شده اول مطمئن شوید که دیگر زمین نشست نمی کند شاید لازم باشد برای اطمینان از این امر چندین ماه منتظر بمانید.

*سنگ ریزه هایی که در شالوده به کار می رود باید طوری ریخته شود که ضخامت در همه جا یکسان باشد.

*در بخش زیرین آسفالت از گیاه کش ها استفاده کنید تا اگر احیانا آسفالت در آینده ترک برداشت در آنجا گیاه روئیده نشود و آسفالت متلاشی نگردد.

*باید آسفالت در درجه حرارت مناسب قرار گیرد. اگر حرارت داده شده بیش از حد باشد (که در این حالت دود آبی رنگی از روی آسفالت متصاعد می شود) سطح آسفالت پس از مدت کوتاهی ترک بر می دارد و آسفالت زودتر از مدت مقرر سخت و سفت می شود.( بنابر این یکی از مواردی که باید مد نظر قرار داد و نظارت صحیحی بر آن داشت کنترل درجه حرارت آسفالت میباشد)

*پیمانکار نباید در یک برجستگی بیش از 5 سانتی متر آسفالت مخلوط گرم بریزد.

*پیمانکار نباید بصورت دستی خیابان را آسفالت کند.

*استفاده از غلتک و عملیات متراکم سازی آسفالت باید از همان ابتدای کار صورت گیرد تا آسفالت در جای خود قرار گرفته و متراکم شود و تا زمانی که تمامی نقاط ناهموار پوشانده شودادامه می یابد.

سقف تیرچه بلوک

روش سقف سازی تیرچه و بلوک ترکیبی است از دو روش پیش ساخته و بتن درجا که در این روش مزایای پیش ساختگی همانند سرعت ساخت و هزینه کم قالب بندی و آرماتوربندی و کیفیت خوب بتن ساخته شده در کارخانه با جنبه های مثبت بتن ریزی درجا همانند عدم نیاز به جرثقیل به خوبی تلفیق شده است.
از مزایای دیگر مصرف کمتر فولاد در این نوع سقف در مقایسه با سقف طاق ضربی - تیرآهن از دلایل عمده توسعه این روش در سالهای اخیر در ایران است.
بخش اول : نکاتی در مورد بتن پیش تنیده و آرمه و سقفهای بتنی

ضعف عمده بتن پایین بودن مقاومت کششی در آن میباشد که حدود 1/10 تا 1/20 مقاومت فشاری آن است و به علت وجود این ضعف جز در موارد خاص همانند شالوده های حجیم و دیواره های حایل وزنی , بتن به تنهایی قابل استفاده نمی باشد.
در قطعات خمشی صفحات پایین تر از صفحه خنثی , کشیده شده و صفحات بالاتر فشرده میشوند . اگر در ساخت این قطعات تنها از بتن استفاده شود توان باربری بسیار کمی خواهند داشت زیرا توان باربری آنها با تاب کششی بسیار ناچیز بتن محدود خواهد شد در صورتی که مقدار زیادی از این تاب فشاری بتن بدون استفتده می ماند.

برای رفع این ضعف بتن ( کمبود تاب کششی ) به دو روش عمل میشود:
1 - مسلح کردن بتن برای تحمل تنشهای کششی.
2 - ایجاد پیش تنیدگی در بتن برای جبران تنشهای کششی که در مراحل اجرا و بهره برداری در آن ایجاد خواهد شد.

در هر دو روش از فولاد که چسبندگی خوبی با بتن دارد و ضریب انبساط حرارتی آن با ضریب انبساط حرارتی بتن تقریبا برابر است استفاده میشود.
قابل ذکر است که فرق اساسی بتن آرمه و بتن پیش تنیده در آن است که در بتن آرمه فولاد و بتن هنگام ساخت بطور ساده کنار هم قرار میگیرند و تنش هر دو در منطقه کششی مقطع , از نوع کششی است. در حالیکه در بتن پیش تنیده یک نوع اتحاد فعال بین آنها وجود دارد به این شکل که ابتدا فولاد توسط جکهای هیدرولیکی بسیار قوی کشیده میشود و بعد از ایجاد پیوستگی کافی بین فولاد و بتن , جکها به آرامی رها کشته و بتن را تحت تنش فشاری قرار میدهد که در مرحله بهره برداری تنش فولاد از نوع کششی و تنش بتن از نوع فشاری است.
در بتن آرمه به علت افزایش طول فولاد در مرحله بهره برداری در منطقه کششی بتن ترکهایی ایجاد میشود و با افزایش تنش کششی فولاد عرض ترکها زیادتر شده و در صورتیکه عرض ترکها محدود نشوند این امر روی پایایی سازه اثر زیان بخشی خواهد داشت. برای این کار مقدار تغییر طول نسبی فولاد محدود شود و چون اساس کشسانی فولاد برای انواع مختلف آن دارای مقدار ثابتی است لذا با محدود کردن تنش فولاد عرض ترکها به مقادیر پیش بینی شده ای محدود خواهد شد. به همین دلیل است که در آیین نامه های اجرایی استفاده از فولادهایی که دارای حد کشسانی بالایی ( با تنش تسلیم بیشتر از 5000 کیلوگرم بر سانتیمتر مربع )هستند مجاز نمی باشد.
برای ایجاد پیش تنیدگی در بتن از فولادهای مورد استفاده در بتن مسلح نمی توان استفاده کرد چراکه حدود 1800 تا 2500 کیلوگرم بر سانتیمتر مربع از تنش کشش اولیه فولاد در اثر خزش و کوتاه شدن کشسانی بتن و همچنین جمع شدگی آن در اثر خشک شدن و وادادگی فولاد و دیگر عوامل حذف و تلف میشود و حتی در صورت استفاده از مقاومترین نوع فولاد برای مسلح کردن بتن معمولی که تنش مجاز آن حدود 2800 کیلوگرم بر سانتیمتر مربع است تقریبا کل نیروی کششی اولیه فولاد در اثر افتهای ذکر شده تلف خواهد شد. به این دلیل در بتن پیش تنیده برای ایجاد پیش تنیدگی از فولاد با مقاومت بسیار بالا استفاده میشود تا پس از تلف شدن مقدار اولیه تنش مقدار زیادی از آن باقی بماند . بطور معمول برای تولید تیرچه پیش تنیده ار فولاد با مقاومت بسیار بالا به قطر 5 میلیمتر و دارای مقاومت 17500 تا 19000 کیلوگرم بر سانتیمتر مربع استفاده میشود.
یکی از قسمتهای اصلی انواع ساختمانها سقفهای بتنی هستند که نقش اساسی آنها انتقال نیروهای قائم و افقی ناشی از وزن مرده سقف و سربارها و نیروهای حاصل از زلزله و باد به تیرها و ستونها و دیوارهای باربر است. همچنین با توجه به اینکه سقفها بخش نسبتا زیادی از قیمت تمام شده ساختمانها را تشکیل میدهند طراحان روشهای مختلفی را برای اقتصادی تر کردن ان و صرفه جویی در فولد و بتن و جلوگیری از قالب بندی بوجود آورده اند از جمله تیرچه و بلوک.
برای صرفه جویی در مصرف بتن و سبکتر کردن وزن سقف قسمتی ار مقطع سقف که در منطقه کششی قرار میگیرد حذف شده و فقط آن مقدار از سطح مقطع بتن که برای جاگذاری آرماتورها ی عرضی و کششی لازم است باقی گذاشته میشود. این روش برای کاهش وزن مرده سقف و ساختمان دارای اهمیت خاصی است. فاصله محلهای باقیمانده به حد کافی نزدیک به هم انتخاب میشوند تا مناطق فشاری و کششی مقطع بتنی سقف بطور یکپارچه عمل کند و سقف حالت اولیه خودش رو از دست ندهد. این طرح باعث ایجاد طرح دالهای مجوف , با پشت بند , لانه زنبوری و ... شده است.