فتح الله شفیعی

مهندسین عمران روستای بردکوه

فتح الله شفیعی

مهندسین عمران روستای بردکوه

راهنمای تراکم آسفالت

راهنمای تراکم آسفالت



1- کلیات
2- معیار تراکم
3- آزمایش­های تراکم
4- تعداد غلتک­های مورد نیاز
5- روش غلتک­زنی
6- غلتک­زنی درزهای عرضی
7- غلتک­زنی درزهای طولی
8- غلتک­زنی اولیه
9- غلتک­زنی ثانویه
10- غلتک­زنی نهایی
11- سطوح غیر قابل دسترسی برای غلتکها
12- تصحیح ناهمواریهای سطح
13- کنترل ترافیک
14- عوامل موثر در تراکم
15- ترک ناشی از تراکم


[URL= 1- کلیات[/URL]
تراکم نقش مهمی در کیفیت ساخت راه و به خصوص لایه­های روسازی آن دارد. تا چندی قبل، تراکم بعنوان بخش مهمی از فرآیند ساخت تلقی نمی­شد ولی با تحلیل­های اقتصادی جامع در مورد روسازی­ها، به وضوح مشخص شده است که طول عمر مورد نظر و هزینه­های نگهداری لایه­های گرانقیمت آسفالت در حد زیادی به ظرفیت باربری آن، یعنی در واقع به تراکم لایه­های آن بستگی دارد.
لایه­های آسفالتی، بعد از پخش، باید به منظور تحمل بارها، توزیع بهتر فشارهای وارده و نیز ایجاد یک سطح صاف و هموار، متراکم شوند. در نتیجه تراکم، لایه­ها به هم می­چسبند تا یک سازه متراکم و بدون درز تشکیل شود و در مقابل نیروهای برشی حاصل از ترافیک بهتر عمل کنند. با کم شدن فضای خالی در آسفالت، مقاومت آن در برابر شرایط آب و هوایی و نیز فرسایش بیشتر شده و باعث دوام بیشتر آسفالت خواهد شد و با کاهش ناهمواری سطح، ایمنی ترافیک و راحتی رانندگی بیشتر می­شود و بار ضربه­ای ترافیک برروی آسفالت کم می­گردد.
با توجه به موارد فوق­الذکر، ضروری است که در تراکم آسفالت بیشتر دقت شود تا نتیجه مطلوب حاصل گردد. در راستای بهبود کیفیت تراکم مخلوط­های آسفالتی توضیحاتی را به شرح زیر ضروری می­داند:
اکثر مخلوط­های آسفالتی چنانچه در دماهایی که غلظت ( ویسکوزیته ) قیر مناسب باشد پخش و غلتک زنی شوند به خوبی متراکم می­گردند. غلتک­زنی باید بلافاصله بعد از پخش مخلوط آسفالتی در درجه حرارت مناسب شروع شود. ولی به منظور تامین کیفیت مطلوب لایه­های آسفالتی، غلتک­زنی باید با دقت صورت گرفته و از ایجاد زبری و ناهمواری زیاد در سطح روسازی جلوگیری کند.
بعد از پخش آسفالت، غلتک­زنی درزهای طولی باید سریعاً انجام شود. غلتک­زنی اولیه باید تا حد امکان سریعتر ( در درجه حرارت مناسب ) انجام شود، بدون اینکه در مخلوط ترک ایجاد شود و یا مخلوط بوسیله لاستیکهای غلتک از جای خود بلند شود. البته غلتک­زنی اولیه نباید خیلی سریع شروع شود زیرا شروع زود هنگام غلتک­زنی عواقبی را به شرح زیر به دنبال خواهد داشت:
- چسبیدن مصالح به جدار غلتک ( با وجود آب پاشی سطح جدار آن ).
- ظهور ترکهای عرضی در پشت جدار غلتک.
- ایجاد برآمدگی و چین­خوردگی در جلوی غلتک.
غلتک­زنی ثانویه باید بلافاصله بعد از غلتک­زنی اولیه انجام شود و تا زمانی که دمای مخلوط به مقداری است که می­تواند به چگالی ماکزیمم برسد ادامه یابد. غلتک­زنی نهایی تا زمانی باید ادامه یابد که مخلوط هنوز برای برطرف کردن اثر غلتک ( ناهمواری ) حالت شکل­پذیری دارند. موضوع زیر بعنوان یک خطمشی پیشنهاد می ­ شود:
درزهای طولی و لبه­ها بلافاصله بعد از پخش، غلتک­زنی شوند. غلتک­زنی اولیه حدود 60 متر بعد از فینیشر و غلتک­زنی ثانویه 60 متر و یا کمتر بعد از غلتک­زنی اولیه و غلتک­زنی نهایی تا حد امکان سریعتر و بعد از غلتک­زنی ثانویه انجام شود.
اگر چگالی مورد نظر در هنگام اجرا بدست نیاید، ترافیک بعدی، روسازی را تحکیم می­دهد که این عمل باعث نشست در زیر چرخهای وسایل نقلیه می­شود. برای رسیدن به چگالی مورد نظر و یک سطح قابل قبول، توصیه می­شود که از غلتک چرخ لاستیکی با فشار تماس بالا همراه با غلتک چرخ فولادی استفاده شود.
غلتک­های ویبره نیز در این کار مفید و با ارزش هستند و چون غلتک­های ویبره ممکن است در مواردی موج ایجاد نماید لذا استفاده از غلتک­های لاستیکی در مراحل نهایی غلتک­زنی می­تواند نارسایی مذکور را برطرف نماید.

[URL=2-معیار تراکم[/URL]
توصیه می­شود که هر لایه از روسازی آسفالتی باید به گونه­ای متراکم شود که وزن مخصوص آن تا میزان 97 درصد وزن مخصوص آسفالت بدست آمده در آزمایش مارشال باشد که این رقم تراکم تابع نوع آسفالت و نحوه بهره برداری از آن می­باشد بطوری که در فرودگاهها درصد تراکم بیشتر بوده و برعکس در جاده­ها با ترافیک سبک می­تواند درصد تراکم کمتر از آن نیز باشد.

[URL= 3- آزمایش­های تراکم[/URL]
آزمایش­های فراوانی برای روش اندازه­گیری درصد تراکم مخلوط­های آسفالتی وجود دارد. معمول­ترین روش آزمایش، اندازه­گیری چگالی نمونه متراکم شده می­باشد که از روسازی، نمونه­برداری شده و با چگالی نمونه متراکم شده در آزمایشگاه مقایسه شود.

[URL= 4- تعداد غلتک­های مورد نیاز[/URL]
بجز در کارهای کوچک، حداقل دو غلتک مورد نیاز است. برای بدست آوردن چگالی مورد نظر هر تعداد عبور غلتک که لازم باشد، باید زده شود.

[URL= 5- روش غلتک­زنی[/URL]
هنگام غلتک­زنی، چرخهای غلتک باید خیس نگه داشته شوند تا از چسبیدن مخلوط به آن جلوگیری گردد.
غلتکها باید با یک سرعت ملایم و یکنواخت و نیز در نزدیکی فینیشر حرکت کنند. سرعت غلتک­های چرخ فولادی بسته به شرایط، نباید بیش از 3 تا 5 کیلومتر در ساعت و سرعت غلتک­های چرخ لاستیکی نباید بیش از 5 تا 8 کیلومتر در ساعت باشد. غلتک باید در شرایط مطلوبی بوده تا توانایی برگشت را بدون لرزش داشته باشد، خط و نوار غلتک­زنی نباید سریعاً عوض شود و یا جهت حرکت آن نباید سریعاً برعکس شود، تغییر سرعت نیز باید به صورت تدریجی اعمال گردد، زیرا در غیر آن صورت باعث جابجایی آسفالت غیر متراکم خواهد شد. هرگونه تغییر جهت لازم در جهت حرکت غلتک، باید برروی مخلوط پایدار و تثبیت شده صورت گیرد. اگر غلتک­زنی باعث جابجایی مخلوط شود، محلهای فوق باید دوباره با شخم زدن نرم شده، به حالت اولیه برگردند و سپس غلتک زده شوند.
به تجیزات سنگین شامل غلتک نباید اجازه داده شود که برروی سطح تمام شده آسفالت قبل از اینکه این سطوح سرد شوند توقف نمایند.
هنگامی که کل عرض خط با یک بار حرکت فینیشر پوشش داده شود و درز طولی بوجود نیاید، اولین نوار باید مطابق زیر غلتک زده شود:
1- درزهای عرضی
2- لبه خارجی
3- غلتک­زنی اولیه از لبه پایینی نوار شروع شده و به سمت لبه بالایی برود.
4- غلتک­زنی ثانویه مانند بند (3) اجرا شود.
5- غلتک­زنی نهایی.
هنگامی که به صورت مرحله­ای ( پلکانی ) و یا در مجاورت یک لایه قبلی روکش انجام می­شود، غلتک­زنی باید مطابق توضیحات زیر انجام گردد:
1- درزهای عرضی
2- درزهای طولی
3- لبه خارجی.
4- غلتک­زنی اولیه از لبه پایینی شروع شده و به سمت لبه بالایی برود.
5- غلتک­زنی ثانویه مانند بند (4) زده شود.
6- غلتک­زنی نهایی
هنگام غلتک­زنی در حالت مرحله­ای، 5 تا 8 سانتیمتر از لبه­ای که فینیشر بعدی برروی آن می­آید باید بدون غلتک­زنی رها شود و سپس هنگامی که درز بین دو نوار غلتک زده می­شود، متراکم گردد. لبه­ها نباید بیش از 15 دقیقه بدون غلتک­زدن رها شوند ( البته این زمان تعیین شده تابع درجه حرارت محیط و درجه حرارت آسفالت در حال پخش شدن نیز می­باشد. ) در اجرای درزهای طولی و عرضی در غلتک­زنی­های ثانویه و در لایه رویه باید توجه ویژه مبذول شود.

[URL= 6- غلتک­زنی درزهای عرضی[/URL]
هرجا که درز عرضی وجود دارد، اولین عبور باید بوسیله غلتک چرخ فولادی که در جهت درز طولی و به مقدار چند متر حرکت می­کند غلتک­زنی شده، سپس درز عرضی به صورت عرضی غلتک زده شود ( غلتک در عرض حرکت کند ). در حین غلتک زنی مذکور با غلتک تاندم، جابجایی عرضی به نحوی باشد که مقدار 15 سانتیمتر از سطح جدید مصالح آسفالتی غلتک­زنی شود. در صورت استفاده از غلتک­های سه چرخ، جابجایی به اندازه یک چرخ عقب غلتک در نظر گرفته شود و بقیه عرض غلتک برروی لایه تثبیت شده قبلی باشد. این کارها در عبورهای بعدی باید تکرار شوند.
تخته­های چوبی با ضخامت مناسب باید در لبه­های روسازی قرار داده شوند تا از حرکت لبه روسازی در حین غلتک­زنی جلوگیری کند. اگر تخته استفاده نشود، غلتک­زنی عرضی باید لزوماً در فاصله حدود 15 تا 20 سانتیمتر از لبه خارجی متوقف شود تا از خرابی و آسیب رساندن به لبه جلوگیری شود. این لبه سپس باید با غلتک­زنی طولی غلتک­زنی شود.

[URL= 7- غلتک­زنی درزهای طولی[/URL]
درزهای طولی باید بلافاصله بعد از فینیشر غلتک­زنی شوند. اگر از غلتک سه چرخ استفاده شود، باید طوری حرکت کند که بیش از 15 سانتیمتر از چرخ عقب غلتک برروی مخلوط متراکم نشده قرار نگیرد.
غلتک­زنی باید در این مسیر ادامه یابد و هنگامی که یک مسیر متراکم شد، تغییر مسیر غلتک باید به صورت تدریجی اعمال گردد. در صورت استفاده از غلتک­های تاندم، آنها نیر باید شبیه سه چرخ عمل کنند.
لبه­های روسازی باید موازی با درزهای طولی غلتک­زنی شوند. در غلتک­زنی لبه­ها، چرخهای غلتک باید 5 تا 10 سانتیمتر خارج از لبه­ها را نیز پوشش دهند. بعد از تراکم درزهای طولی و لبه­ها، غلتک­زنی اولیه باید سریعاً انجام شود.

[URL= 8- غلتک­زنی اولیه[/URL]
این غلتک­زنی باید بوسیله غلتک چرخ فولادی انجام شود. عموماً غلتک­های سه چرخ برای این منظور به کار می­روند ولی گاهی هم از غلتک­های تاندم استفاده می­شود.
هنگامی که از هر دو نوع آنها استفاده می­شود، باید از غلتک سه چرخ در کنار فینیشر استفاده کرد و بعد از آن از غلتک تاندم استفاده نمود.
وزن غلتک بکار رفته برای غلتک­زنی اولیه بستگی به دمای مخلوط، ضخامت لایه و پایداری مخلوط دارد. معمولاً غلتک­های 10 تا 12 تن برای این منظور بکار می­روند.
نکته مهم این است که غلتک­زنی باید از لبه پایینی مخلوط پخش شده شروع شود و سپس به سمت بالاتر حرکت کند. دلیل این کار این است که مخلوط­های آسفالتی وقتی که داغ هستند در زیر غلتک تمایل به حرکت به سمت پایین دست را دارند. اگر غلتک­زنی از لبه بالایی شروع شود، این جابجایی نسبت به وقتی که از لبه پایینی شروع گردد خیلی بیشتر می­شود. هنگامی که لبه­های کناری اجرا شدند، بعد از تراکم مخلوط تازه در درز طولی با 15 تا 20 سانتیمتر از عرض غلتک، همان روش غلتک­زنی باید به کار رود.
غلتکها در عرض­های متفاوت ساخته می­شوند و لذا تدوین یک دستورالعمل و کارکرد یکنواخت و یکسان برای تمام آنها غیر عملی است. به این جهت بهترین روش برای هر غلتک آن است که به صورت جداگانه اعمال شود.
یک یا دو مورد استثناء در مورد غلتک­زنی با غلتک­های چرخ فولادی به صورت فوق وجود دارد و این موضوع وقتی اتفاق می­افتد که شیب عرضی در محل اجرا زیاد بوده و یا شیب طولی در آن مقطع خیلی تند باشد. وقتی شیب تند است، محور محرکه شروع به ضربه و سروصدا برروی ناهمواری می­کند که باعث جابجایی مخلوط و ایجاد یک سطح ناصاف می­شود.

[URL= 9- غلتک­زنی ثانویه[/URL]
این غلتک­زنی باید بلافاصله بعد از غلتک­زنی اولیه شروع شود و تا زمانی که مخلوط خمیری است و توانایی ایجاد مخلوط با ماکزیمم چگالی را دارد ادامه داشته باشد. بدین منظور غلتک­های چرخ لاستیکی باید بکار روند زیرا دارای مزایای زیر هستند:
1) این غلتک­ها نسبت به غلتک­های فولادی درجه تراکم یکنواخت­تری را فراهم می­کنند.
2) قشر رویه را بهبود می­بخشند، در نتیجه نفوذپذیری لایه را کم می­کنند.
3) با ازدیاد فشار باد لاستیکها، سنگدانه­ها در جهتی استقرار می­یابند که در پایدارترین حالت خود بایستند. فشار باد لاستیکها تا مقداری باید زیاد شود که باعث جابجایی مواد نشود، البته فشار باد لاستیکها باید متناسب با نوع و ترکیب مواد باشد. اگر این فشار کم باشد، لاستیک به سمت داخل خم می­شود و اگر زیاد باشد، لاستیک به سمت بیرون خم می­شود که در هر دو حالت تراکم یکنواخت حاصل نخواهد شد.
تراکم با غلتک چرخ لاستیکی به معنای تراکم بر اساس وزن ماشین ( غلتک ) و نیز اثر ورز دادن مخلوط بعلت تغییر شکل لاستیک است. اثر متقابل نیروهای افقی و عمودی، مخلوط را ورز می­دهند که باعث پر شدن حفره­ها در مخلوط می­شود.
استفاده از غلتک چرخ لاستیکی چگالی را نسبت به حالتی که از غلتک چرخ فولادی استفاده می­شود زیاد نمی ­ کند بلکه از تغییر شکل بیشتر آن تحت ترافیک سنگین جلوگیری می­کند، در نتیجه باعث افزایش پایداری می­شود. غلتک­زنی با غلتک چرخ لاستیکی باید به صورت مداوم و از زمان غلتک­زنی اولیه تا تراکم کامل مخلوط صورت گیرد.
به غلتک­های چرخ لاستیکی نباید اجازه چرخش داده شود، زیرا باعث جابجایی مخلوط می­گردند با این وجود این غلتک­ها بر غلتک­های فولادی در این مرحله ترجیح داده می­شوند.
هنگام استفاده از غلتک چرخ فولادی و یا چرخ لاستیکی، نمونه غلتک­زنی شده و پلان آن باید شبیه غلتک­زنی اولیه باشد. این پلان تا حصول تراکم نهایی باید ادامه یابد.

[URL= 10- غلتک­زنی نهایی[/URL]
این مرحله غلتک­زنی فقط برای بهبود کیفیت سطح به کار می­رود. این مرحله غلتک­زنی باید با غلتک تاندم دو محوره و یا سه محوره تا زمانی که مصالح هنوز برای رفع اثر غلتک­های قبلی داغ هستند، انجام شود.

[URL= 11- سطوح غیر قابل دسترسی برای غلتکها[/URL]
وقتی آسفالت در محل­هایی پخش شده باشد که غلتک نتواند به آنجا برود، تراکم می­تواند بوسیله متراکم کننده­های دستی، مکانیکی و یا صفحه متراکم­کننده ویبره حاصل شود. ابعاد این صفحه­ها حدود 30 × 30 سانتیمتر تا 50 50 سانتیمتر است.

[URL= 12- تصحیح ناهمواریهای سطح[/URL]
اگر هرگونه ناهمواری و پستی و بلندی در لایه­های زیر روکش بعد از اتمام تراکم وجود داشته باشد، بوسیله برداشت و یا پخش آسفالت می­توان آن را تصحیح کرد، ولی در لایه رویه باید تمام سطح مورد نظر برداشته شود و سپس با مواد مناسب و کافی جایگزین شود تا یک سطح سالم و هموار بوجود آید.
تمام برجستگیهای کوچک، درزها و دندانه­های کوچک باید غلتک زده شوند تا یک سطح صاف بدست آید. سطح نهایی باید بافتی یکنواخت داشته باشد و مطابق با پلان و تراز نشان داده شده برروی نقشه­ها باشد.
پیمانکاران و ناظرین باید دائماً مقدار و کیفیت ظاهری پخش را در نزدیک فینیشر کنترل کنند تا سنگدانه­ها جدا نشده باشند و یا مقدار آسفالت ریخته شده کم و زیاد نباشد. اگر مشکلی وجود داشته باشد، باید سریعاً مصالح را با مصالح مرغوب و مناسب جایگزین نمود. اگر قبل از جابجایی آنها مصالح آسفالتی غلتک زده شده باشند، تمام سطح معیوب باید تا عمق لازم کنده شده، با مصالح آسفالتی جدید جایگزین شوند.

[URL= 13- کنترل ترافیک[/URL]
تا وقتی که سطح اسفالت سرد نشده باشد، ترافیک نباید از روی سطح عبور کند. در محورهایی که ترافیک ناچاراً باید عبور کند، با آماده کردن قسمتی از عرض و تامین وسایل ایمنی مورد نیاز آن را زیر عبور قرار می­دهند که در این حالت لازم است به میزان کافی علامت­های خطر در محل­های مناسب قرار گیرند تا ترافیک از روی سطوح تازه در دست اقدام، عبور نکند.

[URL= 14- عوامل موثر در تراکم[/URL]
1- تراکم اولیه: هرچه تراکم اولیه بیشتر باشد ( غلتک مربوط به اطوی اولیه )، آسفالت پخش شده برای عبور غلتک­های بعدی ( چرخ لاستیکی ) تعادل بیشتری خواهد داشت و لذا سطح صاف­تری در نهایت حاصل خواهد شد.
2- دمای تراکم: برای ارزیابی تراکم­پذیری مخلوط آسفالتی، عامل اصلی و تعیین­کننده دمای مخلوط است. بدین جهت دمایی که تراکم در آن صورت می­گیرد باید مشخص باشد. هرچه دمای مخلوط آسفالتی پایین­تر باشد، تامین تراکم مخلوط مشکل­تر می­شود و لذا تراکم باید در دمای بین 80 تا 100 درجه سانتیگراد کامل شود، زیرا کمتر از این دما، تراکم مخلوط بسیار مشکل خواهد بود، که البته این مقدار هم­بستگی به نوع قیر بکار رفته دارد.
3- زمان تراکم: این زمان به سرعت سرد شدن لایه اسفالتی بستگی دارد، یعنی در واقع زمان تراکم تابعی از دمای تراکم است. سرعت سرد شدن لایه آسفالتی نیز بستگی به عواملی چون ضخامت لایه، شرایط آب و هوایی، دمای لایه، تغییرات حرارتی از طریق لایه اساس و کاهش دما بعلت تبخیر آب باران و پاشش آب برروی غلتک دارد.
هرچه ضخامت لایه کمتر باشد، لایه آسفالتی سریعتر سرد می شود، همچنین در شرایط آب و هوایی سرد، لایه­ها زود تر سرد می­گردند.

[URL= 15- ترک ناشی از تراکم[/URL]
1- ترکهای عرضی: ترکهای عرضی در آسفالت به دلایل زیر می­توانند بوجود آیند:
- پارگی سطحی
- اگر غلتک در جلو خود یک " موج قوسی " را هل دهد ( بعلت تراکم اولیه ناکافی در هنگام پخش و یا استفاده زود هنگام از غلتک­های سنگین )
- سرد شدن سطح آسفالت
- تغییر مکان لایه آسفالت نسبت به لایه اساس در اثر عبور غلتک
( دلایل ایجاد تغییر مکان: ماسه زیاد در لایه اساس فاقد چسبندگی، عدم وجود اندود نفوذی مناسب ).
- ضخامت زیاد لایه آسفالتی در مقاطع شیبدار.
2- ترکهای طولی: ترکهای طولی در آسفالت ( غیر از ترکهای طولی ناشی از دوبندی­ها که در اثر عدم همپوشانی صحیح در هنگام اجرای باند مجاور ایجاد می­شود ) به دلایل زیر می­توانند بوجود آیند:
- جابجایی در لایه زیرین
- برش در مخلوط در زیر غلتک ( مثلاً اگر آسفالت در یک لایه ضخیم ریخته شده باشد و از غلتک­های سنگین در دماهای بالا استفاده شود، در آن صورت وقتی سطح لایه سرد شده است، این لایه یک پوسته نازک را تشکیل می­دهد، در حالی که درون لایه هنوز داغ است و بخوبی متراکم نمی­شود. )
- شکستن مخلوط بوسیله غلتک، وقتی که غلتک­زنی در مسیر صحیح انجام نشود. ( مثلاً غلتک­زنی از لبه بالاتر به سمت لبه پایین­تر ادامه یابد.)
ترک­های عرضی در لایه­های پایین­تر خطرناک نیستند و با پخش لایه­های بعدی معمولاً پر می­شوند ولی در لایه رویه باید سریعاً مرمت شوند، زیرا با ورود گرد و غبار به داخل آنها، این ترکها باقی می­مانند. ولی ترکهای طولی را باید سریعاً در هر مرحله­ای مرمت کرد زیرا این ترکها اگر مرمت نشوند، در لایه­های بعدی باعث ایجاد ترکهای انعکاسی خواهند شد.

مراحل ساخت فنداسیون ساختمان های اسکلت فلزی

****   مراحل ساخت فنداسیون ساختمان های اسکلت فلزی

نکات اجرایی زیر سازی پی :

فرض کنید یک پروژه اسکلت فلزی را بخواهیم به اجرا در آوریم ، مراحل اولیه  اجرایی شامل ساخت پی مناسب است که در کلیه پروژه ها تقریبا یکسان اجرا می شود، اما قبل از شرح مختصر مراحل ساخت پی ، باید توجه داشت که ابتدا نقشه فنداسیون را روی زمین پیاده کرد و برای پیاده کردن دقیق آن بایستی جزئیات لازم در

نقشه مشخص گردیده باشد. از جمله سازه به شکل یک شیکه متشکل از محورهای عمود بر هم تقسیم شده باشد و موقعیت محورهای مزبور نسبت به محورها یا نقاط مشخصی نظیر محور جاده ، بر زمین بر ساختمان مجاور و غیره تعیین شده باشد.( معمولا محورهای یک امتداد با اعداد 3،2،1و... شماره گذاری می شوند و محورهای امتداد دیگر با حروف  C-B-A و ... مشخص می گردند. همچنین باید توجه داشت ستونها و فنداسیونهایی را که وضعیت مشابهی از نظر بار وارد شده دارند ، با علامت یکسان نشان می دهند : ستون را با حرف C  و فنداسیون را با حرف F نشان میدهند . ترسیم مقاطع و نوشتن رقوم زیر فنداسیون ، رقوم روی فنداسیون ، ارتفاع قسمت های محتلف پی ، مشخصات بتن مگر ، مشخصات بتن ، نوع و قطر کلی که برای بریدن

میلگرد ها مورد نیاز است باید در نقشه مشخص باشد. قبل از پیاده کردن نقشه روی زمین اگر زمین ناهموار بود یا دارای گیاهان و درختان باشد ، باید نقاط مرتفع ناترازی که مورد نظر است برداشته شود و محوطه از کلیه گیاهان و ریشه ها پاک گردد.سپس شمال جغرافیایی نقشه را با جهت شمال جغرافیایی محلی که قرار است پروژه در آن اجرا شود منطبق می کنیم ( به این کار توجیه نقشه می گویند) پس از این کار ، یکی از محورها را (محور طولی یا عرضی ) که موقیعت آن روی نقشه مشخص شده است ، بر روی زمین ، حداقل با دو میخ در ابتدا و انتها ،

پیاده می کنیم که به این امتداد محور مبنا گفته می شود ؛ حال سایر محورهای طولی و عرضی را از روی محور مبنا مشخص می کنیم ( بوسیله میخ چوبی یا فلزی روی زمین ) که با دوربین تئودولیت و برای کارهای کوچک با ریسمان کار و متر و گونیا و شاغول اجرا می شود. حال اگر بخواهیم محل فنداسیون را خاکبرداری کنیم

به ارتفاع خاکبرداری احتیاج داریم که حتی اگر زمین دارای پستی و بلندی جزئی باشد نقطه ای که بصورت مبنا (B.M) باید در محوطه کارگاه مشخص شود ( این نقطه بوسیله بتن و میلگرد در نقطه ای که دور از آسیب باشد ساخته می شود). نکات فنی و اجرایی مربوط به خاکبرداری: داشتن اطلاعات اولیه از زمین و نوع خاک از قبیل : مقاومت فشاری نوع خاک بویژه از نظر ریزشی بودن ، وضعیت آب زیر زمینی ، عمق یخبندان و سایر ویژگیهای فیزیکی خاک که با آزمایش از خاک آن محل مشخص می شود ، بسیار ضروری است. در خاکبرداری پی هنگام اجرا زیر زمین ممکن است جداره ریزش کند یا اینکه زیر پی مجاور خالی شود که با وسایل مختلفی باید

شمع بندی و حفاظت جداره صورت گیرد ؛ به طوری که مقاومت کافی در برابر بارهای وارده داشته باشد یکی از راه حلهای جلوگیری از ریزش خاک و پی ساختمان مجاور، اجرای جز به جز است  که ابتدا محل فنداسیون ستونها اجرا شود و در مرحله بعدی، پس از حفاری تدریجی ، اجزای دیگر دیوار سازی انجام گیرد.

نکات فنی و اجرایی مربوط به خاکریزی و زیر سازی فنداسیون :

 

 

 

 چاههای متروکه با شفته مناسب پر می شوند و در صورت برخورد محل با قنات متروکه ، باید از پی مرکب یا پی تخت استفاده کرد یا روی قنات را با دال بتن محافظ پوشاند. از خاکهای نباتی برای خاکریزی نباید استفاده کرد . ضخامت قشرهای خاکریز برای انجام تراکم 15 تا 20 سانتیمتر است . برای انجام تراکم باید مقداری آب به خاک

اضافه کنیم و با غلتکهای مناسب آن را متراکم نمایی ، البته خاکریزی و تراکم فقط برای محوطه سازی و کف سازی است و خاکریزی زیر فنداسیون مجاز نمی باشد. در برخی موارد ، برای حفظ زیر بتن مگر ، ناچار به زیر سازی فنداسیون هستیم ، اما ممکن است ضخامت زیر  سازی  کم باشد ( حدود 30 سانتیمتر ) در این صورت می توان با افزایش ضخامت بتن مگر زیر سازی را انجام داد و در صورت زیاد بودن ارتفاع زیر سازی ، می توان با حفظ اصول فنی لاشه چینی سنگ با ملات ماسه سیمان انجام داد.

بتن مگر چیست؟

بتن با عیار کم سیمان زیر فنداسیون که بتن نظافت نیز نامیده می شود معمولا به ضخامت 10 تا 15 سانتیمتر و از هر طرف 10 تا 15 سانتیمتر بزرگتر از خود فنداسیون ریخته میشود.

قالب بندی فنداسیون چگونه است؟

قالب بندی باید از تخته سالم بدون گره به ضخامت حداقل 5 . 2 سانتیمتر یا ورقه های فلزی صاف یا از قالب آجری (تیغه 11 سانتیمتری آجری یا 22 با اندود ماسه سیمان برای جلوگیری از خروج شیره بتن ) صورت گیرد. لازم به یادآوری است که پی های عادی می توان با قرار دادن ورقه پلاستیکی ( نایلون) در جداره خاکبرداری از آن به عنوان قالب استفاده کرد.

تذکر: در آرماتور بندی فاصله میله گردها تا سطح آزاد بتن در مورد فنداسیون نباید از 4 سانتیمتر کمتر باشد.

****  چگونگی اجراء و نصب پیچهای مهاری ( بولت) و صفحه کف ستونی (Baseplate) :

ابتدا دلایل استفاده از صفحه کف ستونی و بولت را توضیح می دهم :

ستونهای یک ساختمان اسکلت فلزی ، نقش انتقال دهنده بارهای وارد شده را به فنداسیون (به صورت نیروی فشاری ، کششی ، برشی یا لنگر خمشی) به عهده دارند.

در این میان ، ستون فلزی با صفحه ای  فلزی که از یک سو با ستون و از سوی دیگر با بتن درگیر شده است روی فنداسیون قرار می گیرد. توجه به اینکه ستون فلزی به علت مقاومت بسیار زیاد تنشهای بزرگی را تحمل می کند و بتن قابلیت تحمل این تنشها را ندارد ؛ بنابراین صفحه ستون واسطه ای است که ضمن افزایش سطح تماس ستون با پی ، سبب می گردد توزیع نیروهای ستون در خد قابل تحمل برای بتن باشد.

کار اتصال صفحه زیر ستونی با بتن بوسیله میله مهار (بولت Bolt) صورت می گیرد و برای ایجاد اتصال ، انتهای آن را خم می کنیم و مقدار طول بولت را محاسبه تعیین می کند. تعداد بولت ها بسته به نوع کار از دو عدد به بالا تغییر می کند، حداقل قطر این میله های مهاری میلگرد نمره 20 است ؛ در حالی که صفحه تنها فشار را تحمل می کنر ، بولت نقش عمده ای ندارد و تنها پایه را در محل خود ثابت نگه می دارد . نکته مهم هنگام نصب ستون بر روی صفحه تقسیم فشار این است که حتما انتهای ستون سنگ خورده و صاف باشد تا تمام نقاط مقطع ستون بر روی صفحه بیس پلیت بنشیند و عمل انتقال نیرو بخوبی انجام پذیرد . از آنجا که علاوه بر فشار ، لنگر نیز بر

 

 

صفحه زیر ستونی وارد می شود ، طول بولت باید به علاوه بر فشار ، لنگر نیز بر صفحه زیر ستونی وارد می شود ، طول بولت باید به اندازه ای باشد که کشش وارد شده را تحمل  نماید که این امر با محاسبه تعیین خواهد شد.

انواع اتصال ستون به شالوده :

جزئیات اتصال ستون فلزی به شالوده بتنی به نیروی موجود در پای ستون بستگی دارد . در ستون با انتهای مفصلی فقط نیروی فشاری و برشی از ستون به شالوده منتقل می شوند. اگر بخواهیم لنگر خمشی را نیز به شالوده منتقل نماییم ، در ان صورت ، نیاز به طرح اتصال مناسب برای این کار خواهیم داشت که اتصال گیردار خوانده می شود.

روش نصب پیچهای مهاری  :

به طور کلی ، دو روش برای نصب پیچهای مهاری وجود دارد :

الف) نصب پیچهای مهاری در موقع بتن ریزی  شالوده ها : در این روش  ، پیچها را در محلهای تعیین شده قرار می دهند و موقیعت آنها را به وسیله مناسبی تثبیت می کنند ؛ سپس اطرافشان را با بتن می پوشانند . روشهای گوناگونی برای تثبیت پیچهای مهاری در محل خود وجود دارد که صورت زیر توضیح خواهم داد :

روش اول : ابتدا بوسیله صفحه ای نازک مشابه با ورق کف ستونی که شابلن یا الگو نامیده می شود . قسمت فوقانی بولت و قسمت پایین را بوسیله نبشی به یکدیگر می بندیم تا مجموعه ای بدون تغییر شکل به دست آید ؛ آن گاه محورهای طولی و عرضی صفحه الگو را با مداد رنگی ( گچ و یا رنگ) مشخص می کنیم ؛ سپس بوسیله ریسمان کار یا دوربیت تئودولیت با میخهای کنترول محور کلی فنداسیون را در جهتهای طولی و عرضی به دست می آوریم و به کمک شخصی با تجربه در موقیعت مناسب آن قرار می دهیم. ( محور طولی و عرضی صفحه شابلن بر محور طولی و عرضی کلی فنداسیون منطبق می شود و در ارتفاع صحیح و به صورت کاملا تراز نصب می گردد.) سپس به وسیله قطعات آرماتور آن را به میلگردهای شبکه آرماتور فنداسیون یا به قطعات ورقی (که در بتن قرارداده اند )  جوش (منتاژ) داده می شود ؛ به گونه ای که هنگام بتن ریزی ، صفحه از جای خود حرکتی نداشته باشد. باید دقت داشته باشیم که در موقع بتن ریزی ، هوا در زیر صفحه شابلن ، محبوس نسود . برای این منظور، معمولا سوراخ بزرگی در وسط شابلن تعبیه می کنند که وقتی بتن از اطراف زیر صفحه را پر می کند ، هوا از راه سوراخ خارج گردد و با بیرون زدن بتن از وسط صفحه ، از پر شدن کامل زیر آن اطمینان حاصل شود.

روش دوم : صفحه تقسیم فشار پیش از بتن ریزی پی به طور دقیق در محل خود قرار می گیرد و بوسیله آن بولت ها در جای خود ثابت می شوند . پس از بتن ریزی ، صفحه را از جای خود خارج می کنند و در کارگاه به طور مستقیم به پای ستون متصل می نمایند و پس از نصب ستون به همراه صفحه مهذه ها را محکم می بندند. در این حالت ، هر صفحه ای باید کاملا علامت گذاری شود تا هنگام نصب اشتباهی رخ ندهد.

روش سوم : صفحه را قدری بالاتر از محل اصلی خود نگه می دارند تا محل میله های مهار به طور دقیق تعیین شود ؛ سپس میله مهارها را ثابت می کنند و عمل بتن ریزی را انجام می دهند ؛ در حالی که صفحه هنوز در جای خود ثابت است . پس از پایان یافتن بتن ریزی صفحه را در تراز مورد نظر نگه می دارند . این عمل را می توان به وسیله مهره های فلزی در زیر صفحه ای که میله مهارها از درون آنها عبور کرده اند با پیچتندن و تنظیم آنها تا تراز لازم انجام داد. سپس فاصله های بین دو صفحه و روی بتن پی با ملات ماسه شسته و سیمان به نسبت یک حجم سیمان به دو حجم ماسه کاملا پر می گردد یا از ماسه سیمان نرم (گروت) استفاده می گردد.

 

ب) نصب پیچهای مهاری پس از بتن ریزی شالوده : در این روش ، در محل پیچهای مهاری به وسیله قالب در داخل بتن فضای خالی ایجاد می کنند که این قالب جعبه نامیده می شود  . میلگردی در بتن قرار می دهیم  ، پس از گرفتن و سخت شدن بتن شالوده ، جعبه را از محل خود خارج می کنیم ؛ سپس پیچ مهاری را در محل خود درگیر با آرماتور قرار می دهیم و تنظیم می کنیم و اطراف آن را با بتن ریزدانه ( با حفظ اصول بتن ریزی) پر می کنیم . لازم به یادآوری است جعبه ای که برای ایجاد فضای خالی لازم برای نصب پیچ مهاری به کار می رود ، باید چنان طرح ریزی و ساخته شده باشد که به سادگی و در حد امکان ، بدون ضربه زدن ، شکستن و خرد کردن از داخل بتن خارج شود. برای این منظور می توان از جعبه هایی که قطعات آنها به صورت کام و زبانه متصل می شوند یا از جعبه های لولایی و سایر اقسام جعبه ها استفاده کرد . در مواردی که از پیچهای مهاری با قلاب انتهایی و رکاب یا از پیچهای مهاری با انتهای کلنگی استفاده می شود . برای سزعت بخشیدن به کار ، از جعبه های ساخته شده یا ورقهای فولادی که در درون بتن باقی می مانند، استفاده می شود . باید توجه داشت که این شیوه کار بیشتر برای فنداسیون ماشین آلات صنعتی در کارخانجات کاربرد دارند . لازم به ذکر است در بعضی مواقع برای اتصال کف ستون به شالوده ، به جای پیچهای مهاری از میلگردها یا تسمه هایی استفاده می کنند که به ورق کف ستون جوش داده می شوند که به این صورت می باشد که معمولا در موقع بتن ریزی ، مجموع ورق کف ستونها و مهارها را در شالوده کار می گذارند ، پس از گرفتن و سخت شدن بتن ، ستون را روی ورق کف ستون قرار می دهند و جوشکاری می کنند.

محافظت کف ستونها و پیچهای مهاری ( مهره و حدیده ):

کف ستون ها از جمله قطعات ساختمانی هستند که اغلب در معرض اثر شدید رطوبت قرار دارند و باید به نحو مطلوب حفاظت شوند . در ساختمانهای معمولی و به طور کلی در ساختمانهایی که پس از پایان یافتن کار اسکلت فلزی دیگر نیازی به بازدید و تنظیم کف ستونها نیست ، اطراف کف ستون را با بتن پر می کنند و در صورتی که قبل از بتن ریزی سطوح فولادی خوب تمیز شده و کا جوش یا زغال جوش برداشته شده باشد ، بتن به فولاد می چسبد و آن را کاملا محافظت می کند . در بعضی دیگر از ساختمانها ، کف ستونها را نظیر سایر قطعات به وسیله رنگ محافظت می کنند  . در ساختمانهای صنعتی که امکان باز کردن و نصب مجدد آنها وجود دارد، با مواد قیری مخلوط با ماسه نرم از کف ستون ها حفاظت می شود ؛ همچنین برای تمیز ماندن حدیدهای پیچهای مهاری و دوری از آسیب دیدگی باید قبل از بتن ریزی فنداسیون ، قسمت حدیدها به وسیله پلاستیک یا گونی یا سیم مناسب بسته شده ، پوشش مناسب صورت گیرد .

****  جزئیات و نکات اجرایی ستونها به صورت مختصر:

تعریف ستون فلزی :

ستون عضوی است که معمولا به صورت عمودی در ساختمان نصب می شود و یارهای کف ناشی از طبقات به وسیله تیر و شاهتیر به آن منتقل می گردد و سپس به به زمین انتقال می یابد.

شکل ستونها :

شکل سطح مقطع ستونها معمولا به مقدار و وضعیت بار وارد شده بستگی دارد. برای ساختن ستونهای فلزی از انواع پروفیلها و ورقها استفاده می شود.عموما ستونها از لحاظ شکل ظاهری به دو گروه تقسیم می شوند:

 

1-  نیمرخ (پروفیل) نورد شده شامل انواع تیرآهنها و قوطیها : بهترین پروفیل نورد شده برای ستون ، تیرآهن با پهن یا قوطیهای مربع شکل است؛ زیرا از نظر مقاومت بهتر از مقاطع دیگر عمل می کند.ضمن اینکه در بیشتر مواقع عمل اتصالات تیرها به راحتی روی آنها انجام می گیرد.

2-  مقاطع مرکب : هرگاه سطح مقطع و مشخصات یک نیمرخ (پروفیل ) به تنهایی برای ایستایی ( تحمل بار وارد شده و لنگر احتمالی ) یک ستون کافی نباشد ، از اتصال چند پروفیل به یکدیگر ، ستون مناسب آن (مقاطع مرکب ) ساخته می شود.

چگونگی ساخت ستون (مقاطع مرکب):

ستونها ممکن است بر حسب نیاز با ترکیب و اتصالات متنوع از انواع پروفیلهای مختلف ساخته شوند ، اما رایجترین اتصال برای ساخت ستونها سه نوع است :

1-   اتصال دو پروفیل به یکدیگر به طریقه دوبله کردن : ابتدا دو تیرآهن را در کنار یکدیگر و بر روی سطح صاف به هم چسبیده گردند ؛ سپس دو سر و وسط ستون را جوش داده و ستون برگردانده شده و مانند قبل جوشکاری صورت می گیرد ؛ آن گاه ستون معکوس و در قسمت وسط ، جوشکاری می شود . همین کار را در سوی دیگر ستون انجام می دهند و به ترتیب جوشکاری ادامه می یابد تا جوش مورد نیاز ستون تامین گردد. این شیوه جوشکاری برای جلوگیری از پیچش ستون در اثر حرارت زیاد جوشکازی ممتد می باشد . در صورتیکه در سرتاسز ستون به جوش نیازی نباشد ، دست کم جوشها باید به این ترتیب اجرا گردد :

الف) حداکثر فاصله بین طولهای جوش در طول ستون به صورت غیر ممتد از 60 سانتیمتر تجاوز نکند.

ب) طول جوش ابتدایی و انتهایی ستون باید برابر بزرگترین عرض مقطع باشد و به طور یکسره انجام گیرد.

ج) طول موثر هر قطعه از جوش منقطع نباید از 4 برابر بعد جوش یا 40 میلیمتر کمتر باشد.

د) تماس میان بدنه دو پروفیل نباید از یک شکاف 5/1 میلیمتری بیشتر ، اما از 6 میلیمتر کمتر باسد ؛ ضمنا بررسیهای فنی نشان دهد مه مساحت کافی برای تماس وجود ندارد ؛ در آن صورت ، این بادخور باید با مصالح پر کننده مناسب شامل تیغه های فولادی با ضخامت ثابت پر شود.

2-  اتصال دو پروفیل با یک ورق سراسری روی بالها : در مقاطع مرکبی که ورق اتصال بر روی دو نیمرخ متصل می شود تا مقاطع مرکب تشکیل بدهد ؛ فاصله جوشهای مقطع (غیر ممتد) که ورق را به نیمرخها متصل می کند ، نباید از 30 سانتیمتر بیشتر شود . اندازه حداکثر فاصله فوق الذکر در مورد فولاد معمولی به صورت t22 که  t در آن ضخامت ورق است در می آید.

3- اتصال دو پروفیل با بستهای فلزی (تسمه) : متداولترین نوع ستون در ایران ستونهای مرکبی است که دو تیرآهن به فاصله معین از یکدیگر قرار می گیرد و قیدهای افقی یا چپ و راست این دو نیمرخ را به هم متصل می کند ؛ البته بستهای چپ و راست که شکلهای مثلثی را به وجود می آورند ، دارای مقاومت بهتری نسبت به قیدهای موازی می باشند.در مورد اینگونه ستونها ، بویژه ستون با قید موازی مسائل زیر را بایستی رعایت کرد :

الف) ابعاد بست (وصله ) افقی ستون کمتر از این مقادیر نباشد:

L : طول وصله حداقل به فاصله مرکز تا مرکز دو نیمرخ باشد .

B : عرض وصله از 42 درصد طول آن کمتر نباشد .

 

T : ضخامت وصله از 35/1 طول آن کمتر نباشد.

ب) در اطراف کلیه وصله ها و در سطح تماس با بال نیمرخها عمل جوشکاری انجام گیرد (مجموع طول خط جوش در هر طرف صفحه نباید از طول صفحه کمتر شود) .

ج) فاصله قیدها و ابعاد  آن بر اساس محاسبات فنی تعیین می شود.

د) در قسمت انتهایی ستون ، باید حتما از ورق با طول حداقل برابر عرض ستون استفاده کرد تا علاوه بر تقویت پایه  ، محل مناسبی برای اتصال بادبندها به ستون به وجود آید.

ه) در محل اتصال تیر یا پل به ستون لازم است قبلا ورق تقویتی به ابعاد کافی روی بالهای ستون جوش شده باشد.

روش نصب نبشی بر روی کف ستونها (بیس پلیت) برای استقرار ستون هنگام محاسبه ابعاد کف ستونها باید حداقل فاصله میله مهاری از لبه کف ستون و محل جاگذاری نبشی با ضخامت جوش لازم برای نگه داشتن ستون ، همچنین ضخامت پلیت انتهایی ستون و ابعاد ستون را با دقت بررسی کرد ؛ سپس با توجه به موارد یاد شده ، به نصب نبشی و استقرار ستون به این صورت اقدام نمود . بر روی بیس پلیت ها محل کف ستون و محل آکس را کنترل می کنیم ؛ سپس نبشیهای اتصال را به صورت عمود بر هم بر روی بیس پلیت جوش داده ، آنگاه ستون را مستقر و اقدام به نصب دگر نبشیهای لازم کرده و آنها را به بیس پلیت جوش می دهیم . از مزایای عمود بر هم بودن دو نبشی روی بیس پلیت علاوه بر سرعت عمل و استقرار بهتر به علت تماس مستقیم ستون به بال نبشی ، اتصال جوشکاری به گونه ای درست تر و اصولی تر صورت می گیرد . روشن است که قبل از جوشکاری باید ستونها را هم محور و قائم نموده و عمود بودن در دو جهت کنترل گردد . پس از نصب ستونها با توجه به ارتفاع ستون و آزاد بودن سر ستون ممکن است تا زمان نصب پلها ، ستونها در اثر شدت باد و وزن خود حرکتهایی داشته باشند که احتمالا تاثیر نا مطلوب و ایجاد ضعف در جوشکاری و اتصالات کف ستونها خواهد داشت . به این سبب ، باید پس از نصب ، فورا به مهاربندی موقت ستونها به وسیله میلگرد یا نبشی بصورت ضربدری اقدام کرد.

طویل کردن ستونها :

سازهای فلزی را اغلب در چندین طبقه احداث می کنند ، طول پروفیلها برای ساخت ستون محدود است . با در نظر گرفتن بار وارده و دهانه بین ستونها و نحوه قرار گرفتن ستونهای کناری ، مقاطع مختلفی برای ساخت ستونها به دست می اید. ممکن است در هر طبقه ، ابعاد مقطع ستون با طبقه دیگر تفاوت داشته باشد ؛ بنابراین، باید اتصال مقاطع با ابعاد مختلف برای طویل کردن با دقت زیادی انجام شود . محل مناسب برای وصله ستونها به هنگام طویل کردن آنها حداقل در ازتفاع 45 تا60 سانتی متر بالاتر از کف هر طبقه یا 6/1 ارتفاع طبقه می باشد. این ارتفاع اندازه حداقلی است که از نظر دسترسی به محل اجرای جوش و نصب اتصالات مورد نیاز برای ادامه ستون یا اتصال بادبند لازم است.

نحوه طویل کردن ستونها :

ابتدا سطح تماس دو ستون را به خوبی گونیا می کنند و با سنگ زدن صاف می نمایند تا کاملا در تماس با یکدیگر یا صفحه وصله قرار گیرد . در صورتی که پروفیل دو ستون یکسان نباسد ، باید اختلاف دو نمره ستون را با گذاردن صفحات لقمه (هم سو کننده) بر ستون فوقانی را پر نمود ؛ سپس صفحه وصله را نصب کرد و جوش

 

لازم لازم را انجام داد . اگر ابعاد مقطع دو نیمرخ که به یکدیگر متصل می شوند ، تفاوت زیاد داشته باشند ، به طوری که قسمت بزرگی از سطح آن دو در تماس با یکدیگر قرار نگیرد ، در این صورت باید یک صفحه تقسیم فشار افقی بین دو نیمرخ به کار برد . این صفحه معمولا باید ضخیم انتخاب شود تا بتواند بدون تغییر شکل زیاد ، عمل تقسیم فشار را انجام دهد. کلیه ابعاد و ضخامت صفحه و مقدار جوش لازم را باید طبق محاسبه و بر اساس نقشه های اجرایی انجام داد.

ستونها با مقاطع دایره ای :

معمولا مقاطع  لوله ای (دایره ای ) از قطر 2 تا 12 اینچ برای ستونها بیشتر مورد استفاده قرار می گیرند. مقطع لوله در مواقعی که بوسیله اتصال جوش باشد ، آسانتر به کار می رود . کاربرد لوله بیشتر در پایه های بعضی منابع هوایی ، دکلهای مختلف و خرپاهای سبک است . این مقطعها به طور کلی مقاومترند ، برای اینکه ممان انرسی انها در تمام جهات یکسان است . با تغییر ضخامت مقاطع لوله ای می توان اینرسی های مختلف را به دست آورد.

انحراف مجاز پس از نصب ستون :

همان طور که گفتم  ، ستونها باید کاملا شاغول بوده و علاوه بر آن ، از محور کلی که در نقشه آکس بندی مشخص شده است ، نباید انحرافی بیش از آنچه در آیین نامه ها تعیین سده داشته باشد. در این جدول میزان انحراف مجاز ستونها در هنگام نصب ، مشخص گردیده است :

قطعه ساختمانی

حداکثر انحراف

ستون با ارتفاع h انحراف موقعیت مکانی

محور ستون از محور انتخاب شده

آن در سطح اتکای ستون

................................................................    5 - +

انحراف محور ستون در انتهای فوقانی آن از خط شاغول.................   25- +

<=1000/H

انحراف از خط شاغول در اثر خم شدن ستون (شکم دادن)............... 15- +

<=1000/H

 

**** شرح مختصری از شاهتیرها و تیرهای پوششی

شاهتیرها ( پلها) :

شاهتیرها عضوهای فلزی افقی اصلی هستند که با اتصالات لازم به ستونها متصل می شوند و به وسیله آنها بار طبقات به ستونها انتقال می یابد. شاهتیرهای فلزی ممکن است به صورتهای زیر به کار روند :

الف) تیرهای معمولی بصورت تک یا دوبله

ب ) تیرآهن بال پهن

ج ) تیرآهن معمولی با ورق تقویتی روی بالها و یا بال و جان

 

د ) پلهای لانه زنبوری از تیرآهن معمولی یا تیرهای بال پهن که بصورت مفصل در این مقاله توضیح خواهم داد

ه ) تیر ورق (گیردار) ترکیب تیرآهن معمولی با ورق یا تیرآهن بال پهن با ورق و یا از ترکیب ورقها درست می شود

و ) خرپاها

ساخت پلها و شاهتیرها : هرگاه در شاهتیرهای فلزی به جای تیر تکی از تیرهای دوبله استفاده شود ، باید دو تیر در محل بالها به یکدیگر به گونه ای مطلوب اتصال داشته باشند . چنانچه پلها (شاهتیرها ) برای لنگر خمشی موجود کفاف ندهد، آنها را با اضافه کردن تسمه یا ورق تقویت می نمایند . در مورد ورق تقویتی در تیرهای معمولی باید نکات زیر را رعایت کرد :

1 ) حداکثر ضخامت ورق تقویتی 8/0 ضخامت بال تیر باشد .

2 ) ورقهای تقویتی به طول کامل با بالها تماس و اتصال داشته باشد.

3 ) ضخامت جوش 75/0 ضخامت ورق باشد.

4 ) ورق تقویتی از هر دو طرف و در قسمت عرض نیز جوش گردد.

پلهای مرکب :

در بارهای سنگین و احتمالا دهانه زیاد که پروفیل استاندارد موجود در بازار کافی یا اقتصادی نباشد ، همچنین مقطع نیر لانه زنبوری که با تسمه یا ورق تقویت شده است ، برای بار وارد شده و دهانه خمش کافی نباشد ، از تیرهای مرکب استفاده می شود که تیر مرکب در چندین حالت استفاده می شود :

1 ) تیر مرکبی که از بریدن پروفیلهای معمولی ایرانی از وسط جان تیر و اتصال صفحه و ورق مناسب به دو قسمت بریده شده ساخته می شود . این روش برای پروفیلهای نمره 20 به بالا اقتصادی خواهد بود .

2 ) تیر مرکبی که از سه صفحه ( قطعات تقویتی ) تشکیل می شود. در این حالت ، در پروفیلهای معمولی از فولاد جان تیر نسبت به فولاد بالها برای مقابله با خمش چندان استفاده نمی شود ، بلکه سعی می گردد ، حتی المکان ، جان تیر را نازکتر و ارتفاع آن را زیاد کنند.

اتصالات ساده تیر به ستون و شاهتیر :

این اتصالات بر دو نوع است :

1 ) اتصال با جفت نبشی جان : معمولا دو عدد نبشی را در کارخانه به جان تیر جوش می دهند . جوشهای بین نبشی و ستون یا شاهتیر را در کارگاه در روی کار انجام می دهند . معمولا نبشیهای اتصال را به اندازه 10 تا 12 میلیمتر از

انتهای جان تیر فاصله آزاد می گذارند تا اگر تیر در حدود رواداریهای مجاز بلند باشد ، بدون بریدن سر آن و تنها با جابه جا کردن نبشی آن را نصب کنند.

2 ) اتصال با نبشی نشیمن : این نوع اتصال را در عکس العملهای نسبتا کوچک تا حدود 15 تن به کار می برند . نبشی نشیمن عمل نصب و تنظیم تیر را آسان می کند. این نبشی را معمولا قبلا در کارخانه یا پای کار در ارتفاع لازم به ستون جوش می دهند و بعد تیر روی آن سوار و به آن جوش می شود . در این اتصال ، نبشی کمکی دیگری در بالای تیر نصب و جوش می شود که در محاسبه در مقابل عکس العملهای تکیه گاه به حساب نمی آید و عمل آن تنها ثابت کردن تیر در محل خود و تامین تکیه گاه عرضی و جلوگیری از غلتیدن آن است . سعی می شود که

 

اتصال با نبشی نشیمن تا حد امکان انعطاف پذیر باشد تا از آزادی دوران تیر در تکیه گاه جلوگیری نشود و در حقیقت ، اتصال ساده و مفصلی باشد تا در تکیه گاه ایجاد لنگر نکند . معمولا عرض نشیمن گاه نباید از 5/7 سانتیمتر کمتر باشد . در آیین نامه AISC عرض استاندارد را 10 سانتیمتر برای نشیمن انتخابکرده اند . برای این منظور نبشی فوقانی را با ابعاد ظریف و فقط دو لبه انتهایی بالها آن را (در امتداد عرض بال تیر ) جوش می دهند . لازم به ذکر است که وقتی عکس العمل زیادتر از حد تحمل نبشی گردد ، می توان از نبشی تقویت شده با مقطع T استفاده کرد . ضخامت صفحه نشیمن گاه در حدود ضخامت بال تیر انتخاب می شود . استفاده از صفحات تقویت کننده زیر یک نشیمن به صورت مستطیلی یا مثلثی استفاده می گردد.

اتصال چند پل در یک محل به ستون :

مواقعی که با توجه به پوشش سقف به نصب پل در دو جهت عمود بر هم در محل ستون می شود ، یک پل به بالهای ستون و پل دیگر به جان ستون متصل خواهد شد ؛ در نتیجه ، ستون از دو جهت تحت تاثیر بار قرار خواهد گرفت که باید با توجه به بار وارد شده و دهانه پل ، همچنین تعیین نوع گیرداری پلها در محل ستون اقدامات لازم برای اتصال صحیح و مطلوب به عمل آید .

اگر برخورد پل در خارج از ستون باشد ، باید آن ناحیه را از نظر نیروی خارج از مرکز ، همچنین نحوه اتصال صحیح و اصولی به ستون به دقت بررسی و کنترل کرد.

روش نصب پلها در طبقات : محل نصب پلها در اسکلت فلزی بسیار مهم است ، زیرا پلها تحمل کننده بار سقف از طریق تیرها هستند . با توجه به مقدار بار وارد شده و دهانه ، ارتفاع آنها مشخص می شود و معمولا از ضخامت سقف و ارتفاع تیرها بیشتر است ؛ بنابراین ، با توجه به نقشه های معماری و تقسیم فضاها ، پلها باید در جایی طراحی و نصب شوند که به علت ارتفاع زیاد ایجاد اشکال در کف نکنند و سعی شود به صورت آویز در سقف مشخص نباشد ، به این دلیل ، معمولا پلها در زیر دیوارهای جدا کننده بین فضاها مصب می شوند که علاوه بر بار وارد شده باید وزن دیوارهای جدا کننده بر روی آنها در محاسبه منظور شود.

روش اتصال پل به پل :

 اتصال دو پل که دارای ارتفاع هستند ، به روش زبانه کردن آنها انجام می گیرد که این روش از نظر اتصالات بهتر است . در صورت امکان پل با دهانه بزرگتر در داخل پل با دهانه کوچکتر زبانه می شود . نصب ورق اتصال در جان و روی بال پل کوچکتر برای برش ضروری است  . در این حالت ، به علت کوتاه بودن دهانه ، لنگر خمشی  کمتری ایجاد شده در نتیجه ، نمره با سطح مقطع پلها کاهش می یابد

تیر پوشش :

 نوع پوشش سقف در طبقات اسکلت فلزی با توجه به کاربرد ساختمان تعیین می شود که معمولا سقفهای بتن آرمه یا طاق ضربی مورد استفاده قرار می گیرند . معمولا تیرآهن پوشش از پروفیلهای IPE و INP  استفاده می شود . فاصله تیرها بین 65/0 تا 10/1 متر و طول را حداکثر تا 5 متر در نظر می گیرند . البته خیز باید مورد توجه باشد.

اتصال تیر پوشش به پل به وسیله نبشی :

 

 

 معمول در اتصال تیر پوشش به پل از حالت جوش و نبشی استفاده می شود . هر چه بتوانیم محل اتصال را تا حدودی گیردار به وجود آوریم ، لرزش در تیر پوشش کمتر خواهد بود و مساله خیز به نحو مطلوبتری حل خواهد شد ؛ البته اگر طبق محاسبات نحوه اتصال نیم گیردار انجام دهیم ، در مصرف پروفیل صرفه جویی خواهد شد.

مهار کردن تیرهای پوشش :

 تیرهای پوشش را علاوه بر اتصال درست به تکیه گاه ، بایستی از نظر حرکات جانبی و پیچش  ، کمانش قطری ، لهیدگی مورد کنترل قرار داد و آنها را مهار کرد . در اسکلت فلزی معمولا تیرهای پوشش را با گذاردن میلگرد ها بصورت ضربدری و جوش به بال تیر آهن و اتصال به قسمتهای پوشش تکیه گاه اسکلت را مهار کرده و بادبند افقی تشکیل می شود. در دهانه کناری از میلگرد های افقی که مانع رانش دهانه ابتدایی و انتهایی می شود، استفاده می کنند.

لقمه ها و پرکننده ها : طبق آیین نامه سازهای جوشی ، پرکننده (لقمه) با ضخامت6 میلیمتر و یا بیشتر باید به اندازه کافی از لبه های ورق وصله بیرون باشد تا به قطعه ای که به آن نصب می شود ف به حد کافی جوش داده شود . به طوری که بتواند نیروی ورق وصله را که به ورق پرکننده وارد می شود ، منتقل نماید . لبه های پرکننده هایی که ضخامت آنها از 6 میلیمتر کمتر است ، باید با لبه های ورق وصله هم باد باشند . در این حالت ، اندازه جوش باید مساوی مجموع اندازه جوش لازم برای حمل نیروی وصله به اضافه ضخامت ورق پرکننده در نظر گرفته شود.

روش اجرای طویل کردن تیرها :

 ابتدا در محل مناسب دو تیرآهن  در امتداد یکدیگر قرار داده می شوند . برای جوشکاری کامل بین دو تیرآهن در هر یک از پروفیلها درز با پخ مناسب ایجاد می شود ؛ سپس به جوشکاری با نفوذ لازم اقدام می گردد ؛ آن گاه سطح جوش را سنگ می زنند و بلافاصله با پلیت درز را می پوشانند و اطراف آن را جوش کامل می دهند . اندازه وصله اتصال و طول جوش لازم باید محاسبه شود. بهترین محل مناسب ورق برای طویل کردن ناحیه نقطه عطف لنگر خمشی و تلاش برشی است و باید از اتصال ورق در ناحیه برش ( نزدیک تکیه گاه ) و لنگر ماکزیمم(وسط دهانه ) پرهیز کرد . در صورت اجبار ، باید علاوه بر جان تیرآهن بالها را به نحوه مطلوب با ورق اتصال جوشکاری کرد .

چگونگی اتصال کنسولهای غیر ممتد :

 در سیستم اسکلت فلزی ، پیش آمدگی ( کنسول) که در اصطلاح بالکن نامیده می شود ، به دو شیوه اجرا می گردد : یکی پیش آمدگی ممتد که پلها از ستون عبور می کنند و کنسول لازم به دست می آید ؛ دیگر اینکه کنسول به صورت غیر ممتد باسد ، اتصالات باید نسبت به طول کنسول و مقدار بار وارده طراحی شود و نحوه قرار گیری آن به ستون مد نظر باشد . چون کنسول در محل تکیه گاه ممان منفی دارد و باید آن را با گذاشتن ورق مطابق اتصالات صلب ، همچنین در صورت لزوم اضافه کردن لچکی به ورق بالا اتصال صحیح به ستون اجرا شود . کلیه ابعاد و اندازه اتصالات و تقویت کننده ها باید طبق محاسبه صورت گیرد.

****  همه چیز در مورد تیرهای لانه زنبوری

تعریف تیرهای لانه زنبوری  :

 

دلیل نامگذاری تیرهای لانه زنبوری ، شکل گیری این تیرها پس از عملیات ( بریدن و دوباره جوش دادن ) و تکمیل پروفیل است . اینگونه تیرها در طول خود دارای حفره های توخالی (در جان) هستند که به لانه زنبور شبثه است ؛ به همین سبب به اینگونه تیرها لانه زنبوری می گویند.

هدف از ساخت تیرهای لانه زنبوری  :

هدف این است که تیر بتواند ممان خمشی بیشتری را با خیز (تغییر شکل ) نسلتا کم، همچنین وزن کمتر در مقایسه با تیر نورد شده مشابه تحمل کند ؛ برای مثال ، با مراجعه به جدول تیرآهن ارتفاع پروفیل IPE-18 را که 18 سانتیمتر ارتفاع دارد ، می توان تا 27 سانتیمتر افزایش داد.

محاسن و معایب تیر لانه زنبوری :

باتوجه به مثال گفته شده در بالا با تبدیل تیرآهن معمولی به تیرآهن لانه زنبوری ، اولا : مدول مقطع و ممان انرسی مقطع تیر افزایش می یابد . ثانیا : مقاومت خمشی تیر نیز افزوده می گردد . در نتیجه ف تیری حاصل می شود با ارتفاع بیشتر ، قویتر و هم وزن تیر اصلی . ثالثا : با کم شدن وزن مصالح و سبک بودن

تیر ، از نظر اقتصادی مقرون به صرفه تر خواهد بود. رابعا : از فضاهای ایجاد شده (حفره ها) در جان تیر می توان لوله های تاسیساتی و برق را عبور داد. در ساختن تیر لانه زنبوری مه منجر به افزایش ارتفاع تیر می شود ، باید استاندارد کاملا رعایت گردد ؛ در غیر اینصورت ، خطر خراب شدن تیر زیر بار وارد شده حتمی است.

از جمله معایب تیر لانه زنبوری ، وجود حفرهای آن است که می تواند تنشهای برشی را در محل تکیه گاهها پل به شتون یا اتصال تیراهن تودلی (تیر فرعی) به پل لانه زنبوری تحمل کند ؛ بنابراین ، برای رفع این عیب ، اقدام به پر کردن بعضی حفره ها با ورق فلزی و جوش می کنند تا اتصال بعدی پل به ستون یا تیر فرعی به پل به درستی انجام شود. تیر لانه زنبوری در ساختمان اسکلت فلزی می تواند به صورت پل فقط در یک دهانه یا به صورت پل ممتد به کار رود . برای ساختن تیر لانه زنبوری دو شیوه موجود است  : الف ) شیوه برش پانیر ب) شیوه برش لتیسکا

روشهای مختلف برش تیر آهن :

1-  برش به روش کوپال : با استفاده از دستگاه قطع کن سنگین که به گیوتین مخصوص مجهز است  ، تیرآهن به شکل سرد در امتداد خط منکسر قطع می شود.

2-  برش به روش برنول : برش در این حالت به صورت گرم انجام می گیرد ؛ به این صورت که کارگر ماهر برش را با شعله بنفش رنگ قوی حاصل از گاز استیلن و اکسیژن، به وسیله لوله برنول ، انجام می دهد.

بریدن تیرهای سبک به وسیله ماشینهای برش اکسیژن شابلن دار نسبتا ساده است .

در ایران تیرهای لانه زنبوری را بیشتر با دست تهیه می کنند.

روشهای ساختن تیر لانه زنبوری و تقویت آن :

روش تهیه تیرهای لانه زنبوری از این قرار است که ابتدا در روی جان تیرآهن نورد شده با استفاده از اگو که بصورت 5. شش ضلعی از ورق آهن سفید یم میلیمتری (شابلن) با توجه به استاندارد ساخته شده خط می گردد ؛ سپس تیرآهن را روی یک شاسی افقی با زدن تک خال جوش در نقاط مختلف برای جلوگیری از تاب برداشتن قرار می دهند . آن گاه با استفاده از دستگاه برش (برنول) در امتداد خط منکسر اقدام به برش می کنند تا

 

پروفیل به دو قسمت بالا و پایین تقسیم شود. حال اگر قسمت بالا را به اندازه یک دندانه جابجا کنیم و دندانه های دو قسمت با و پایین را به دقت مقابل هم قرار دهیم و از دو طرف کارگر ماهر آنرا جوشکاری کند با استفاده از جوش قوسی نیمه اتوماتیک برای اتصال دو نیمه بریده شده ؛ یک جوش خوب ، بی عیب ؛ سریع و مقرون به صرفه خواهد بود . همان طور که در مطالب قبلی نیز گفتم ، تیر ساخته شده در محل تکیه گاهها با توجه به حفره های خالی آن در مقابل تنشهای برشی ضعیف می شود . برای جبران این نقیصه ، با توجه به منحنی نیروی برشی نیز به پر کردن حفره ها با ورقهای تقویتی اقدام می کنیم.لازم به ذکر است که حداقل باید یک حفره با ورق در تکیه گاه به وسیله جوش کامل پر شود.

در پایان یادآور می شوم که یک نوع دیگر از پروفیلهای لانه زنبوری را پس از بریدن قطعات بالا و پایین ورق واسطه اضافه می کنند که این ورق ورق واسطه بین دندانه ها جوش می شود . در نتیجه ، تیر حاصل به مراتب قویتر از تیری است که بدون ورق واسطه ساخته می شود .

تقویت تیرهای لانه زنبوری به کمک رفتار مرکب بتن و فولاد در تیرهای لانه زنبوری علاوه بر تنشهای خمشی اصلی در محل حلقه ها تنشهای خمشی ثانویه حاصل از برش در مقطع ایجاد میگردد که گاهی این تنش از تنشهای خمشی اصلی در تیر بزرگترند. این تنشها از کارایی تیر می کاهند و برای مقابله با آنها باید حلقه های کناری را با ورق پر کرد خصوصا هنگامی که از این نوع تیرها بصورت یکسره استفاده می شود در محل تکیه گاهها که هم نیروی برشی و هم لنگر خمشی زیاد می باشد تنشهای خمشی بشدت افزایش میابد و نیاز به تقویت تیر در این محلها می باشد که از لحاظ اقتصادی قابل توجیه نمی باشد. در این پروژه برای مقابله با این ضعف در تیرهای لانه زنبوری رفتار مرکب بتن و فولاد تهیه شده هست . به این ترتیب که داخل تیر فلزی در نقاطی که تنشهای ثانویه قابل ملاحظه می باشند از بتن پر می شود و کشش حلقه های خالی را به عمل تغییر می دهد و این امر سختی و مقاومت تیر را افزایش می دهد و از نظر اقتصادی مقرون به صرفه می باشد.

**** شکل پذیری و ظوابط طراحی قابهای متشکل از تیرهای لانه زنبوری از دیدگاه مقاومت در برابر زلزله:

قابهای متشکل از تیر های لانه زنبوری به طور گسترده و روز افزون (غالبا توام با سیستم مهار بندی متقرب المحور ) در صنایع ساختمانی کشورمان مورد استفاده قرار داده می شوند . خصوصیات هندسی تیرهای لانه زنبوری به نحوی است که تحت اثر تغییرات لنگر خمشی ، تغییر شکلهای (اصطلاحا ) ثانوی برشی ، که اغلب قابل ملاحظه اند به وقوع پیوسته تغییر مکان جانبی سازه تحت اثر اعمال نیروهای جانبی ناشی از زلزله در جهت عدم اطمینان می گردد. اثرات این تغییر شکلها ، در تیر های لانه زنبوری در مقایسه با تیرهای دارای جان توپر با سختی خمشی معادل، منجر به بروز تغییر مکان جانبی بیشتر و نتیجتا افزایش اثر بار p  ، به ویژه در حیطه رفتار ماوراء الاستیک در این قابه می گردد . بروز تمرکز تنش و شدت زیاد حوضه تنشی در گوشه سوراخها ، ملاحظاتی را در طراحی این تیرها در مقابل اثرات ناشی از پدیده خستگی کم تواتر در اثر وقوع زلزله ، ایجاب می نماید .

گونه های مختلف گسیختگی تیرهای لانه زنبوری ، شامل انحنا ء مختلف کمانش کلی و موضعی و کمانیسم محتمل پلاستیک و شکست می باشد .  باتوجه به آنکه شکل پذیری و توانایی جذب انرژی ، تابع میزان قابلیت رفتار عضو سازه ای در حیطه پاسخ غیر خطی ماوراء الاستیک بوده و معیارهای مناسبی از دیدگاه ظرفیت مقاومت و کیفیت رفتار در مقابل نیروهای ناشی از زلزله شدید تلقی می گردند . ضرورت تدوین ظوابط منطقی جهت ایجاد

 

امکانات رفتار شکل پذیر در قابهای متشکل از تیرهای لانه زنبوری محرز می گردد . بر اساس مطالعات آنالیتیک عددی و آزمایشگاهی رفتار خمیری و حدی این تیرها مورد بررسی قرار داده شده نکاتی در مورد مقولاتی از قبیل اثرات تمرکز تنش ، تنش های پس ماند بروز پلاستیسیته موضعی و گسترده ، مکانیسمهای گسیختگی پلاستیک مورد بحث قرار داده شده است و رفتار غیر خطی تیر لانه زنبوری از نظر عملکرد غیر خطی مصالح ، با در نظر گرفتن اثرات سخت شدگی جنبشی به روش اجزاء محدود مطالعه شده و با ملحوظ داشتن اثرات گسترش ترک در گوشه سوراخها در کاهش ضرفیت باربری حد نهایی تیر ، رفتار غیر خطی تیر به صورت روابط بار تغییر مکان و لنگر و تغییر زاویه ارائه گردیده است  که با نتایج حاصل از آزمایش مطابقت داشته است . همچنین از طریق طرح ریزی آزمایشهای ویژه رفتار غیر خطی اجزا تشکیل دهنده تیر لانه زنبوری مطالعه آزمایشگاهی چندی بر تیرهای لانه زنبوری اصلاح شده به منظور بهبود رفتار خمیری و افزایش شکل پذیری گزارش شده است . تحقیقات جاری شامل بررسی آزمایشگاهی رفتار قابهای متشکل از تیرهای لانه زنبوری از دیدگاه شکل پذیری همچنین مطالعه پدیده کمانش جانبی پیچشی چون در دست انجام است تا بدست آمدن نتایج مطالعات جامعتر از دیدگاه رفتار لرزه ای توصیه های ذیل را می توان به عنوان الگوی اولیه جهت تدوین

ضوابط طراحی سازهای فولادی متشکل از تیرهای لانه زنبوری مقاوم در مقابل زلزله( یا بدون سیستم های مهار بندی ) به عنوان مکمل ضوابط طراحی تیرهای لانه زنبوری تلقی نمود:

1- اثرات تغییر شکلهای برشی ثانویه تیر لانه زنبوری ( و ستونهای تسمه دار) در تحلیل ملحوظ گردد.

2- تحلیل با در نظر گرفتن نیروی p   انجام شود.

3- تحلیل با در نظر گرفتن اثرات ناشی از انعطاف پذیری اتصالات مربوطه انجام شود.

4- تا انجام تحقیقات گسترده تر به منظور کاهش تغییر مکان جانبی سیستم مقاوم حتی المقدور از سیستم قاب فضا کار متشکل از تیرهای لانه زنبوری بدون استفاده از سیستم مهاربندی مختلط اجتناب گردد.

5 در کلیه اجزاء تیر خواص مقاطع فشرده رعایت گردد.

6- طول عضو لانه زنبوری به نحوی اختیار گردد که مقاومت پلاستیک مقطع از نظر کنترل طرح با ایمنس مکفی بر سیلان برشی پیشی گیرد و به طور کلی مکانیسم پلاستیک خمشی یا شبه ویرندیلی مقدم بر سایر گونه های گسیختگی صورت پذیرد و تا میزان قابل ملاحظه ای از تغییر شکل از بروز گونه های گسیختگی ممانعت به عمل آید.

7 از سخت کننده های جان در پانل های انتهایی استفاده شود و محاسبات با در نظر گرفتن اثر سخت شدگی جان انجام گردد.

8- برای ممانعت از بروز گسیختگی تردگونه و همچنین بروز کمانش موضعی در گوشه بازشوها و بهبود رفتار تحت اثر پدیده خستگی کم تواتر قوسی به مشخصات ارائه شده در ضمیمه الف مبحث دهم مقررات ملی ساختمانی ایران در گوشه بازشوها اجرا گردد.

9 از جوش با نفوذ کامل استفاده گردد.

10 به منظور جلوگیری از کمانش جانبی-پیچشی مقاطع T  ، تا فاصله 4/1 طول دهانه از اتصال تیر به ستون قیود جانبی به فواصلی برابر با بعد به پانل  و از آن به بعد فواصل متناسب برای تیرهای شکل پذیر در نظر گرفته شود.

 

11 از تقویتهای مناسب جان برای جلوگیری از کمانش تحت اثر بار متمرکز و برش زیاد استفاده گردد.

12- از تقویتهای مناسب جان برای افزایش ظرفیت چرخشی لوله های مقاطع T در مکانیسم شعبه ویرندیلی در پانلهای بحرانی استفاده گردد.

13 تا انجام تحقیقات گسترده تر ، تحت بارهای دوره ای و مطالعه رفتار هیستریک ، سیستم های قاب فضا کار متشکل از تیرهای لانه زنبوری ، توام با سیستمهای مهاربندی (مختلط) به عنوان قاب فضا کار لنگر گیر معمولی (بدون قابلیت عملکرد و شکل پذیر ویژه ) و با ضریب رفتار مناسب با آن بکار گرفته شود.

14- حداکثر ارتفاع سیستم های مختلط توام با قاب معمولی متشکل از تیرهای لانه زنبوری به 50 متر محدود گردد.

15 استفاده از تیرهای لانه زنبوری به عنوان عضو تیر واسط در قابهای مهاربندی شده با سیستم مهاربندی واگرا مجاز نمی باشد.

16 فولاد مورد استفاده باید از نوع شکل پذیر ، با مقاومت مناسب در مقابل گسیختگی سریع و با دمای انتقال پایین باشد.

17 حداکثر مقاومت سیلان فولاد مورد مصرف  3600  kg/cm2 محدود گردد.

18 نوع سطوح برشی حاصل از ماشین و برش اتوماتیک شعله ای با کیفیت خوب قابل قبول می باشد ولی سطوح برشی حاصل از برش شعله ای دستی باید پرداخت داده شود.

19 حداکثر رواداری مجاز از نظر عدم هم امتداد بودن و دو نیمه جوش شده تیر که بر حسب نسبت اندازه نابجایی اولیه در وسط ارتفاع اعضاء قائم جان به ارتفاع کل جان تعریف می شود.

20 حتی المقدور طراحی این تیرها به صورت مرکب (مختلط) با عملکرد توام با بتن کف انجام شود. اتصالات موسوم به خورجینی قبل از آنکه بتوان در مورد نحوه عملکرد اتصالات موسوم به خورجینی از دیدگاه رابطه بین لنگر و چرخش اتصال و همچنین شکل پذیری اتصال و در نتیجه میزان مطلوب بودن این اتصالات به عنوان اتصالات قابهای فضایی شکل پذیر یا بدون مهار بندی اضهار نظر قطعی نموده ، لازمست تحقیقات دامنه داری در مورد رفتار استاتیکی و دینامیکی اینگونه اتصالات انجام شود.

مطالعاتی که در حیطه الاستیک روی رفتار تیرهای خورجینی انجام گرفته حاکی از آن است که میزان گیرداری این اتصالات را می توان در جهات تیرهای خورجینی با استفاده از ورقهای اتصال که در بالا و پایین به بال تیرهای خورجینی و به ستون و در عین حال به کناره نبشی های اتصال فوقانی و تحتانی جوش شده اند ، بهبود بخشید و تمایل به پیچش ناشی از برون محوری را در ناحیه اتصال خنثی نمود و در عین حال از نظر میزان تمرکز تنش نیز شرایطی مناسبی را ایجاد کرد  استفاده از لچکی هایی جهت جلوگیری از تغییر شکل نبشیهای اتصال فوقانی و تحتانی نه تنها از نظر ایجاد محدودیت و قیود بیشتر در تغییر مکان جانبی پیچشی تیرهای خورجینی بلکه از نظر افزایش میزان گیرداری اتصال تیر فرعی به مجموعه نیز خورجینی و ستون نیز موثر می باشد. در عین حال با توجه به تمایل تیرهای خورجینی به تغییر مکان جانبی پیچشی به علت برون محوری ، انتضار می رود تیرچه ها و مصالح مورد استفاده در کف طبقات معولا قادر به جلوگیری از تغییر مکان جانبی-پیچشی تیرهای خورجینی و بهبود بخشیدن به این نقطه ضعف ناشی از برون محوری اتصال باشند.

 

استفاده از ورقهای فوقانی و تحتانی به نحوه مذکور در سطور فوق در محل اتصال و همچنین استفاده از تسمه های متصل کننده تیرهای خورجینی در فواصلی متناسب در طول دهانه تیرهای خورجینی از نظر محدود نمودن تغییر شکلهای جانبی پیچشی تیرها مفید خواهند بود . استفاده از تیرهای خورجینی ناودونی و ستونهای دوبل متشکل از پروفیلهای ناودونی به نحوی که جان تیر جان تیر خورجینی در تماس با جان پروفیل ، ستون باشد به لحاظ کاهش میزان برون محوری رفتار من حیث المجموع بهتری ، چه از نظر میزان لنگر قابل انتقال توسط اتصال و چه از نظر نحوه توزیع تنشها و ضرائب تمرکز تنش ، در حیطه الاستیک نشان می دهند . تحقیقات بیشتر در زمینه رفتار ماوراء الاستیک این اتصالات و رفتار در مقابل بارهای متناوب دوره ای و تغییر علامت دهنده در حال حاظر در دست انجام می باشد.

**** نکات اجرایی دیوارهای غیر باربر در اسکلت فلزی :

برای اجرای دیوارهای غیر بار بر با تیغه ها باید ضوابطی را به این شرح در نظر گرفت :

1-   حداکثر طول مجاز و دیوار غیر باربر با تیغه بین دو پشت بند عبارت است از40 برابر ضخامت دیوار یا تیغه و یا 60 متر ، هر کدام کمتر است.

2-   پشت بند (وادار) باید به ضخامت حداقل معادل ضخامت دیوار و به طول حداقل6/1 بزرگترین دهانه دو طف پشت بند باشد . به جای پشت بند می توان ستونکهای قائم فولادی ، بتن آرمه یا چوبی در داخل تیغه یا دیوار قرار داد و در دو سر ستونکها را به طور مناسبی در کف و سقف طبقه مهار کرد.

3- حداکثر ارتفاع مجاز دیوارهای غیر باربر و تیغه ها از تراز کف مجاور3.5 متر است . در صورت تجاوز از این حد باید همراه با تیغه توسط کلافهای افقی و قائم به طور مناسبی به تقویت دیوار اقدام کرد.

4-   تیغه هایی که در تمام ارتفاع طبقه ادامه دارند ، باید کاملا به زیر پوشش سقف مهر شوند ، یعنی رگ آخر تیغه همراه با فشار کافی در سقف جای داده شود .

لبه فوقانی تیغه هایی که در تمام ارتفاع طبقه ادامه ندارند، باید با کلاف فولادی با بتن آرمه یا چوبی که به سازه ساختمان یا به کلاههای احاطه کننده تیغه متصل است، کلاف بندی شود.

5-لبه قائم تیغه ها نباید آزاد باشد . این لبه ها باید به یک تیغه دیگر یا یک دیوار عمود بر آن ، یا یکی از اجزای سازه یا ستونکی که به همین منظور از فولاد ، بتن آرمه یا چوب تعبیه می شود، با اتصال کافی داشته باشد. ستونک می تواند از یک ناودانی حداقل نمره 6 یا معادل آن از فولاد ،بتن آرمه یا چوب تشکیل شده باشد . اگر طول تیغه پشت بند کمتر از  1.5  متر باشد ، از لبه آن می تواند آزاد باشد.

6-   در صورتیکه دیوار و تیغه متکی به ان به طور همزمان یا بصورت لاریز یا هشتگیر چیده شوند، اتصال تیغه به دیوار کافی تلقی می گردد. ولی چنانچه تیغه بعد از ساختن دیوار و بدون اتصال به آن ساخته شود ، باسد در محل تقاطع در داخل ملات بین رگها با میلگرد به قطر 8 میلیمتر ( یا تسمه فولادی معادل آن) که حداقل در طول 25 سانتیمتر در داخل دیوار و 50 سانتیمتر در داخل تیغه قرار می گیرد ، به ارتفاع حداکثر 60 سانتیمتر تیغه را به دیوار مهر کرد. در غیر این صورت لبه کناری تیغه آزاد تلقی می شودو طبق مطالب گفنه شده در بالا باید ستونک در این لبه تعبیه گردد. ضمنا در تیغه عمود بر هم با یکدیگر قفل و بست شوند.

سایر توصیه های اجرایی آیین نامه ها در ساختمانهای اسکلت فلزی:

 

1-  اگر دهانه خرپا یا شاهتیری بیش از 8 متر باشد ، برای جبران تغییر شکل در اثر بار مرده باید قبلا به آن کوژ یا خیز منفی (پیش خیز ) یا تغییر شکل رو به بالا بدهیم . مقذار تغییر شکل را مهندس محاسب تعیین می کند.

2-  برای جلوگیری از خوردگی قطعات فولادی حداقل ضخامت اجزای اعضای سازه ای که در فضای خارج و در معرض عوامل جوی یا اثرات خورنده دیگر قرار دارند ، از 6 میلیمتر کمتر نباشد. در محیطهای خشک و به دور از هر گونه آثار خورندگی ، این مقدار به 5 میلیمتر کاهش می یابد.

3-  به کار بردن روشهای گرم کردن موضعی یا تغییر شکل مکانیکی برای ایجاد انحنا و یا از بین بردن ان ( راست کردن خم ) مجاز است. دمای موضعهای گرم شده نباید از 565 سانتیگراد برای فولادهای قوی مخصوص و 650 درجه سانتیگراد برای فولادهای نرمه بیشتر باشد. صافکاری آهن الات در درجه حرارتهای بالا به نوعی که رنگ محل تحت حرارت آبی باشد ، مجاز نیست.

4-  لبه هایی که با شعله بریده می شوند ، ( و در آینده محل وارد شدن تنشهای کششی بزرگی خواهد بود )  باید کاملا یکنواخت و خالی از ناهمواریهای بیش از 5 میلیمتر باشند. ناهمئاریها و خراشیدگیهای بیش از 5 میلیمتر را باید با سنگ زدن و در صورت لزوم با جوش هموار نعمیر کاری کرد ؛ همچنین لبه های بریده شده با شعله که مصالح جوش در آن قرار خواهد گرفت ،  باید تا حد امکان عاری از ناهمواری و بریدگی باشد.

5-  در درزهای فشاری که در آنها انتقال نیرو از طریق فشار تماسی مستقیم قسمتی از ظرفیت اتصال را تشکیل می دهد ، باید سطوح قطعات در تماس ، به وسیله تراش دادن ، سوهان زدن ، سنگ زدن و روشهای مناسب دیگر به خوبی آماده شده باشد.

6-  در بلند کردن قطعات بویژه شاهتیرهای بلند و خرپاها باید از نقاط مخصوص که قبلا معین شده است با احتیاط کامل به منظور جلوگیری از ایجاد تنش زیاد در قطعه استفاده کرد.

7-  به منظور تصحیح نقایص جزئی ساخت معمولا می توان از تراش ، ضربه و یا بزش کم استفاده کرد ، ولی هرگز نباید از مشعل برش ، مخصوصا برای رفع نقایص قطعات اصلی که معمولا تحت فشار هستند ، استفاده نمود . استفاده از مشعل ممکن است در رفع نقایص تیرهای فرعی که تحت فشار نیستند ، مجاز باشد. در هر صورت ، پس از رفع نقص ،‌تمیزکاری سطوح ، مخصوصا سطوحی که روی هم قرار می گیرند ، الزامی است.

8-  در صورتیکه در ابعاد نهایی اسکلت فلزی انحرافاتی مشاهده شود ، اگر مقادیر آنها از مقادیر انحراف مجاز نصب بیشتر نباشد ، کار انجام شده در ردیف کار خوب به شمار می آید . به طور کلی ، هر یک از قطعات نصب شده  باید شاغول یا تراز شود و در محور صحیح تشخیص طبق نقشه قرار می گیرد ، به شرطی که انحراف آن از500/1 بیشتر نباشد.

9-  در نصب قطعات فلزی همواره خطرات جانی وجود دارد ؛ بنابراین باید کلیه نکات ایمنی ، چه از نظر پوشش و چه از نظر کاری رعایت شود . قطعات فلزس در نصب مقدماتی (موقت) باید ب پیچ و مهره یا هر وسیله ممکن ، به نحوی که در مقابل تنشهای نصب و مانور کارگران مقاومت نماید ، به هم متصل شوند. به جز در مواردی که در بادبندهای کافی به طور دائمی در اسکلت تعبیه شده است ، همواره باید از مهارها و بادبندهای موقتی و مستحکم تا زمانی که ایمنی ایجاب می کند و اسکلت فلزی پایداری خود را به دست نیاورده است ، برای جلوگیری از خطر سقوط قطعات فلزی استفاده کرد .

 

**** اثر طراحی و اجرای اتصالات جوشی بر آسیب پذیری لرزه ای سازه های فولادی

باگذشت حدود 50 سال از کاربرد اتصالات جوشی در صنعت ساختمان در ایران هنوز نقایص زیادی در اجرای ساختمانهای فولادی جدید مشاهده  می شود. در یک بررسی اولیه عوامل زیر را می توان به عنوان  دلایل  اصلی نقایص ذکر کرد که در همین بخش اشاره خواهم کرد :

1-     عدم طرح دقیق اتصالات جوشی با  توجه به عملکرد مورد نظر آنها

2 -     عدم انطباق اجرای معمول ساختمان با آیین نامه ها و   دستورالعملها

3-     کیفیت پایین جوش به علت  عدم وجود آموزش کلاسیک کافی در این زمینه برای مهندسان و جوشکاران

4-     نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور.

در این قسمت از  مقاله بعد از مرور خرابیهای سازه های فولادی در زلزله های گذشته ایران و جهان سعی گردیده تا طراحی و اجرای معمول و سنتی سازه های فولادی جوش شده درکشور با  حالت قابل قبول آن مقایسه گردد. برای این منظور از آیین نامه های معمول طراحی سازه های فولادی ایران و آیین نامه های طراحی کشورهای صنعتی زلزله خیز استفاده شده تا مشخص شود که چه مواردی از اجرا یا آیین نامه ها و دستورالعملهای اجرایی همخوانی ندارد. علاوه بر آن مطالعه ای بر روی نقاط ضعیفی که ناشی از اجرای جوش می باشد انجام گرفته و در پایان پیشنهاداتی برای بهبود وضع موجود و کاهش خطرات ناشی از زلزله ها در این نوع  سازه  ها  ارایه گردیده است.

قبل از شروع این بحث بهتر است بحث را با مقدمه کوتاهی شروع کنم :

سازه فولادی از مجموعه ای از اعضای باربرساخته شده از نیمرخهای فولادی یا ورق می باشد که به کمک اتصالات به یکدیگر متصل می گردند . با توجه به روشهای تکامل یافته ای که برای تولید نیمرخ های فولادی به  کار گرفته می شود این مقاطع غالبا رفتار در حد قابل انتظاری از  خود نشان می دهند. مساله بسیار مهم رفتار اتصالاتی است که  الف)   برای ساخت اعضای مرکب از نیمرخ و ورق برای یکپارچه نمودن  اعضا (شامل تیر و ستون و مهاربندها ) در محل گره ها مورد استفاده قرار می گیرد . وسایلی که برای ساخت اعضا  و اتصال آنها به  یکدیگر به کار می رود شامل پیچ و پرچ و جوش است . در این میان استفاده از جوش در ساختمان سازی متعارف در ایران بسیار رایج است.تا زمان وقوع زلزله نورث ریچ (1994 )تصور بر این بود که در صورت رعایت اصول فنی در طرح و اجرای سازه های فولادی جوشی این سازه هادر زلزله عملکرد قابل قبولی از خود  نشان می دهند.اما وقوع این زلزله این فرض را زیر سوال برد . در این زلزله مشاهده شد که در بسیاری از اتصالات , در محل درز جوش اتصال , فلز مادر (Base metal) دچار ترک یا بعضا شکست شده است. این مساله باعث شد تا تحقیقات گسترده ای در مورد علت این پدیده صورت گیرد که این تحقیقات  تا به امروز ادامه دارد . از طرف دیگر مشاهده و تحقیق  درباره وضعیت ساخت و ساز ساختمانهای فولادی نشان می دهد که اتصالات جوشی متداول در ایران از کیفیت مناسبی برخوردار نیستند و با وجود سابقه نسبتا طولانی در استفاده از جوشکاری در صنعت ساختمان هنوز نقایص  زیادی در این زمینه مشاهده می شود.

عملکرد  لرزه ای ساختمانهای فولادی

 

 

براساس تجربه های حاصل از زلزله های گذشته و مطالعات انجام گرفته سازه هایی در برابر زلزله دارای عملکرد بهتری هستند که بتوانند ضمن حفظ پایداری و انسجام کلی خود انرژی ناشی از زلزله را تا حد امکان جذب و مستهلک نمایند.با توجهبه منحنی نیرو-تغییر مکان  سازه ها و توجه به  این مطلب که سطح بین منحنی نیرو-تغییرمکان و محور تغییرمکان نشان دهنده میزان انرژی جذب شده توسط سازه است.هر چه سازه شکل پذیرتر باشد انرژی بیشتری را  هنگام زلزله جذب کرده و رفتار مطلوبتری دارد.  فولاد نرمه به علت طبیعت شکل پذیر از این نظر ماده مناسبی می باشد و می تواند میزان زیادی انرژی جذب کند . اما تجربه نشان داده است  که در سازه  های فولادی  در صورت عدم استفاده از اتصالات مناسب عملکرد مناسب لرزه ای آنها مناسب و قابل قبول نخواهد بود و در اثر زلزله دچار شکست سازه ای و یا انهدام خواهد شد.در زلزله منجیل (1369) مشاهده شد که تعدادی از ساختمانهای فولادی دچار تخریب کامل شدند. رفتار این سازه ها در این زلزله ثابت کرد که در بسیاری از موارد سازه های موجود دارای سیستم مقاوم زلزله مناسبی نیستند.استفاده  از تیرهای خورجینی(تیرهای سرتاسری در دو طرف ستون با اتصال نبشی) و عدم شناخت سیستم حاصل و مدل صحیح برای این اتصالات باعث شده این سیستم از نظر مهندسی زلزله بسیار آسیب پذیر تلقی گردد .درس حاصل از این زلزله کیفیت پایین ساخت و ساز شهری بودکه در سالهای اخیر تلاشهایی برای اصلاح آن به عمل آمده است. در زلزله نورث ریچ آمریکا مشاهده شد که در بسیاری ازساختمانهای فولادی  اتصال تیرها و ستونها دچار ترک ویا بعضا شکست شد . بیشتر این ترکها و شکستها در بال ستون اتفاق افتاده است.

صنعت جوشکاری ساختمان در ایران

با گذشت 50 سال از استفاده از جوش در ساختمان دهه اخیر (80-1370 ) از نظر تعداد ساختمانهایی که  با سازه های فولادی طراحی و اجرا شده اند کاملا استثنایی به شمار می آید. در نیمه دوم این دهه دهها هزار سازه فولادی در تهران و شهرهای بزرگ ایران به ناگهان سر از زمین برآورد . گسیل سرمایه ها به سوی ساخت و ساز شهری و تبدیل ساخت سرپناه به ماشین سرمایه گذاری جهت سودهایکلان باعث گردید تا رعایت اصول فنی و ایمن سازی ساختمانها در برابر زلزله در برابر منفعت طلبی صاحبکاران عملا مورد توجه قرار نگیرد.از طرف حجم عظیم ساخت و ساز نیروی انسانی زیادی اعم از مهندس و تکنسین و جوشکار احتیاج داشت که باعث ورود افراد غیرمتخصص به این جرگه گردید.تمامی این مسایل دست به دست هم داد تا طرح و اجرای ساختمانهای فولادی آنچنان که  باید از کیفیت  مطلوبی برخوردار نباشد.تخریب کلی ساختمانهای فولادی در زلزله منجیل موید پایین بودنکیفیت ساختمانهای فولادی کشور می باشد. از میان تمامی عوامل  دخیل  در طرح  و ساخت سازه های  فولادی اتصالهای جوشی از نارساییهای بیشتری برخوردارند. علل اصلی پایین بودن کیفیت جوش درساخت و سازهای شهری را می توان  به صورت زیر بیان نمود :

1-     عدم انطباق اجرای معمول سازه های فولادی با آیین نامه ها  و دستورالعملها

2-     کیفیت پایین جوش به علت عدم آموزش کلاسیک کافی در این زمینه برای جوشکاران و مهندسان

3-     نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور

4-     عدم طرح دقیق اتصال جوشی با توجه به عملکرد مورد نظرآنها

 

 

1-  عدم انطباق اجرای معمول سازه های فولادی با آیین نامه ها  و دستورالعملها:

در بسیاری از موارد طرز اجرای متداول جوش باجزییات ارایه شده در آیین نامه تطابق ندارد. این موارد ناشی از موارد متعددی است که از میان آنها به موارد زیر می توان اشاره کرد:

الف) آشنا نبودن مهندسین سازه به مسایل اجرایی و در نتیجه ارایه نقشه ها و جزییات غیرقابل اجرا

ب) گران تر بودن هزینه اجرای جزییات آیین نامه نسبت به روش سنتی اجرا

پ)آگاه نبودن کارفرما و یا مهندس مجری طرح به جزییات آیین نامه و عدم توانایی در تمیز دادن حالات مختلف ازیکدیگر بعد از اجباری شدن آیین نامه 2800(1368) اهمیت وجود سیستم مقاوم در برابر زلزله از یک طرف و محدودیتهای معماری برای استفاده از سیستم مهاربندی از طرف دیگر باعث استفاده روزافزون از سیستم قاب خمشی در جهت عرضی ساختمانها شد.در این سیستم اتصال تیر به ستون از نوع  گیردار بوده یعنی باید توانایی انتقال برش و لنگراز تیر به ستون وجود داشته باشد . در این نوع اتصالات از ورقهای بالاسری و زیرسری که در محل اتصال به ستون برای ایجاد جوش نفوذی کامل خورده است استفاده می شود. اما از آنجاییکه متاسفانه عملیات جوشکاری در محلکارگاههای ساختمانی و نه در محل کارخانه صورت می گیرد کنترل  کیفیت جوش بخصوص در هنگام  مونتاژ درارتفاع زیاد از سطح زمین حتی به صورت عینی(Visual)  امکان پذیر  نمی  باشد. همچنین معمولا در محل  اتصال   ورق به ستون به جای  جوش نفوذی از  جوش گوشه استفاده می شود در نتیجه هنگام زلزله این نقاط  علاوه بر تحمل نیروی کمتر در   حالت تردشکن گیسخته خواهد شد. زمانی که در یک عضو فشاری ازدومقطع در کنار یکدیگر استفاده می شود باید هم پایداری کل عضوبه عنوان یک المان و هم پایداری تک تک مقاطع کنترل شود تا هیچ کدام تحت تاثیر نیروی فشاری به طور جداگانه دچار کمانش نشوند . برای این منظور این مقاطع باید در فواصل مشخص به یکدیگر متصل شوند تاطول آزاد آنها کاهش یابد. بسیاری از اوقات بادبندهای دوبل در طول خود به یکدیگر وصل نمی شوند و در نتیجه دومقطع بایکدیگر عمل نمیکنند و بار بحرانی عضو کمتر از مقداری است که مهندس سازه در محاسبات خود منظور نموده است. مبحث دهم مقررات ملی ساختمان حداکثر فاصله بین جوش دومقطع در ستونهای ترکیبی را مقرر نموده است.اما در موارد زیادی مشاهده می شود که فاصله بین جوش ستونها بیشتراز این مقدار است.

2-    کیفیت پایین جوش به علت عدم آموزش کلاسیک کافی در این زمینه برای جوشکاران و مهندسان یکی از مهمترین اشکالات موجود در اجرای ساختمانهای فولادی در کشور کیفیت پایین جوشکاری ساختمان می باشد . عوامل مختلفی در این امر تاثیر می گذارند .

استفاده ازجوشهای کارگاهی حتی در مورد جوشهای نفوذی و اجرای کل جوشکاری درکارگاه ساختمانی و استفاده از نیروی انسانی غیرمجرب از عوامل اصلی پایین آمدن کیفیت جوشکاری ساختمان می باشد. در نتیجه عوامل برشمرده شده مشکلات عدیده ای گریبانگیر اتصالات جوشی می باشد.

در بسیاری از  موارد سطح فلز در حال جوش آلوده به روغن یا مواد نامناسب دیگر است و یا اینکه روی فلززنگ زده یا رنگ خورده جوش داده می شود . گاه در فاصله بین پاسهای متوالی جوش حتی از جدا نموده گل جوش نیز خودداری می شود و یابدون برداشتن گل جوشکاری اقدام به زدن رنگ ضدزنگ می شود.از انواع جوشهایی که درکارهای ساختمانی بسیار از آن استفاده می شود جوش سربالا می باشد. به علت سختی اجرا در غالب موارد

 

این نوع جوش از کیفیت پایینی برخوردار است. در بسیاری از موارد در اثر استفاده از تکنیکهای نامناسب جوشکاری نقایصی چون تابیدگی و پیچش در قطعات اتفاق می افتد.

عیوبی نظیر نفوذ ناقص  بریدگی کناره جوش  اختلاط سرباره  تخلخل و وجود ترک درفلز مادر  باعث کاهش ظرفیت باربری قطعات می شود. یکی از متداولترین اشکال مقاطع مورد استفاده در سازه های فولادی تیرهای لانه زنبوری می باشد .  بسیاری از مجریان طرح این تیرها را در وضعیت نامطلوبی در کارگاه  ساختمانی مونتاژ میکنند. در بسیاری از موارد جوش میانی تیر از کیفیت پایینی برخورداراست و با توجه به اهمیت عملکرد مناسب این قسمت و تقویتهای لازم درمحل تکیه گاه تیر و وسط آن صورت نمی پذیرد. متاسفانه طراحی و اجرای پلکانهای فولادی در ساختمانها نیز از کیفیت پایینی برخوردار است و با توجه به اهمیت عملکرد مناسب این قسمت ساختمان پس از زلزله دقت لازم در ساخت آن مبذول  نمی شود .

3-    نبود  نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری درکشور:

با توجه به اهمیتی که شهرداری برای مسایلی از قبیل پارکینگ و نورگیرها و مسایلی از این دست قایل است مشاهده می شود که بیشتر توجه مهندسان نیز به این امور معطوف می باشد و توجه چندانی به مسایل سازه ای نمی شود. البته باید به این نکته نیز اشاره  شود که به علت عدم وجود آموزش جوشکاری در واحدهای درسی دانشجویان عمران مهندسینی که از دانشگاه فارغ التحصیل می شوند در این زمینه دارای اطلاعات کافی نیستند و به عنوان مهندس ناظر نمی توانند مسوولیت خود را به نحواحسن انجام دهند.البته باید به این موارد مساله سختی کار را نیز افزود.به علت جوشکاری در ارتفاع غالب مهندسین از انجام بازدید از این جوشها طفره می روند. در نهایت امر اینکه آنطور که از ظواهر امر مشخص است شهرداریها نیز در این زمینه کوچکترین نقشی ایفا نمی کنند و هیچگونه نظارتی بر اجرای ساختمانها ندارند.

4-    عدم طرح دقیق اتصال جوشی با توجه به عملکرد مورد نظرآنها:

بسیاری از کارفرمایان عمل طراحی سازه و ایجاد تمهیدات مقابله با زلزله  را یک امر زاید می دانند و تلاش می کنند  تا کمترین هزینه ممکن را صرف این  کار نمایند.از طرف دیگر شهرداریها کمترین نظارتی بر طرح و اجرای سازه ها نداشته فقط به مسایل معماری دقت می کنند. این عوامل دست به دست هم می دهد تا فقط حق امضای مهندسین سازه اهمیت داشته باشد و طرح از حداقل اهمیت برخوردار باشد به خاطر همین موضوع  مهندسین سازه  اغلب کمترین وقت را صرف این عمل می نمایند و بالطبع دقت لازم را در طرح اتصالات جوشی مبذول نمی شود. بعضی اوقات از اتصالات طرح شده برای یک ساختمان در نقشه های دیگر ساختمانها استفاده می شود.

در بسیاری از موارد جزییات اتصالات  موجود در نقشه ها نامفهوم بی دقت و ناقص است.

نتیجه گیری از این بخش و همچنین ارائه چند پیشنهاد :

از بررسی های انجام شده بر روی ساخت وساز ساختمانهای فلزی در سطح تهران مشخص است که هنوز مشکلات زیادی در طرح و اجرای این سازه ها وجود دارد. و عمده مشکلات و نقایص مربوط به اتصالات جوشی است.اجرای جوش کارگاهی و نبود آموزشکافی برای مهندسان عمران و عدم نظارت کافی بر حسن اجرای جوش و ... مشکلاتی است که این صنعت را رنج میدهد.و برای رفع این  موارد بهترین راه:

 

1-     در صورت امکان استفاده  از جوش در کارخانه به جای جوش کارگاهی

2-     بالابردن سطح آگاهی عمومی جامعه درباره زلزله بر ساختمانها

3-     آموزش جوشکاری به جوشکاران و دادن گواهینامه به جوشکاران ماهر ساختمانی

4-     آموزش جوشکاری به عنوان  واحد درسی به مهندسین عمران و یا ایجاد شاخه جدیدی تحت  عنوان  بازرسی جوش اسکلت برای مهندسین ناظر

5-     تقویت سیستم نظارتی موجود و ایجاد سیستم های نظارتی ناظربر کار مهندسین عمران

**** دیوار برشی

در پایان این مقاله بد نیست در مورد دیوار های برشی که نقش عمده ای در سازه های ساختمانی را ایفا می کنند اشاره نمایم.مطالب زیر در مورد دیوار های برشی است :

با نیروهای جانبی مؤثر بر یک سازه ( در اثر باد یا زلزله ) به طرق مختلف مقابله می شود که اثر زلزله بر ساختمانها از سایر اثرات وارد بر آنها کاملا متفاوت می باشد . ویژگی اثر زلزله در این است که نیروهای ناشی از آن به مراتب شدیدتر و پیچیده تر از سایر نیروهای مؤثر می باشند . عناصر مقاوم در مقابل نیروهای فوق شامل قاب خمشی ، دیوار برشی و یا ترکیبی از آن دو می باشند . استفاده از قاب خمشی به عنوان عنصر مقاوم در مقابل نیروهای جانبی بخصوص اگر نیروهای جانبی در اثر زلزله باشند احتیاج به جزئیات خاصی دارد که شکل پذیری کافی قاب را تأمین نماید .این جزئیات از لحاظ اجرایی غالبا دست و پاگیر بوده و در صورتی می توان از اجرای دقیق آنها مطمئن شد که کیفیت اجرا و نظارت در کارگاه خیلی بالا باشد از لحاظ برتری می توان گفت که دیوار برشی اقتصادی تر از قاب می باشد و تغییر مکانها را کنترل می کند در حالی که برای سازه های بلند قاب به تنهایی نمی تواند در این زمینه جوابگو باشد . حال به ذکر چند نمونه از دیوارهای برشی می پردازیم :

1-دیوار های برشی فولادی : بعضی مواقع ورقهای فولادی به عنوان دیوارهای برشی بکار می روند . برای جلوگیری از کمانش موضعی چنین دیوارهای برشی فولادی لازم است از تقویت کننده های قائم و افقی استفاده شود.

2-دیوارهای برشی مرکب : دیوارهای برشی مرکب شامل : ورقها ی تقویت شده فولادی مدفون در بتن مسلح ، خرپاهای ورق فولادی مدفون در داخل دیوار بتن مسلح و دیوارهای مرکب ممکن دیگر ، که تماما با یک قاب فولادی و یا با یک قاب مرکب تؤام هستند می شود .

3- دیوارهای برشی مصالح بنایی : از دیر زمان در ساختمانهای مصالح بنایی از دیوارهای مصالح بنایی توپر غیر مسلح استفاده می شده است ولی روشن شده است که این دیوارها از نقطه نظر مقاومت در مقابل زلزله ضعف دارند و لذا اکنون به جای آنها از دیوارهای برشی مسلح نظیر دیوارهای با آجر تو خالی و پر شده با دوغاب استفاده می شود .

 4-دیوارهای برشی بتن مسلح : نوع دیگری از دیواهای برشی ، دیوارهای برشی بتن مسلح است که در این مقاله به آن می پردازیم. یکی از مطمئن ترین روشها برای مقابله با نیروهای جانبی استفاده از دیوار برشی بتن مسلح است. دیوار برشی به عنوان یک ستون طره بزرگ و مقاوم در برابر نیروهای لرزه ای عمل می کند و یک عضو ضروری برای سازه های بتن مسلح بلند و یک عضو مناسب برای سازه های متوسط و کوتاه می باشد .

 

 انواع دیوار برشی بتن مسلح : دو نوع دیوار برشی بتن مسلح وجود دارد :

 1-دیوار برشی در جا : در دیوار برشی در جا به منظور حفظ یکنواختی و پیوستگی میلگرد های دیوار ، به قاب محیطی قلاب می شوند.

2-دیوار برشی پیش ساخته : در دیوار های برشی پیش ساخته یکنواختی و پیوستگی با تهیه کلیه های ذوزنقه شکل در طول لبه های پانل و یا از طریق اتصال پانلها به قاب توسط میخهای فولادی صورت می گیرد . تأثیر شکل دیوار : تعبیه بال در دیوارها برای پایداری و شکل پذیری سازه بسیار مفید می باشد  .  نیروهایی که به دیوارهای برشی وارد می شوند : به طور کلی دیوار های برشی تحت نیروهای زیر قرار می گیرند :

1-نیروی برشی متغیر که مقدار آن در پایه حداکثر می باشد .

2-لنگر خمشی متغیر که مقدار آن مجددا در پای دیوار حداکثر است و ایجاد کشش در یک لبه ( لبه نزدیک به نیروها و فشار در لبه متقابل می نماید ) با توجه به امکان عوض شدن جهت نیروی باد یا زلزله در ساختمان ، کشش باید در هر دو لبه دیوار در نظر گرفته شود.

3-نیروی محوری فشاری ناشی از وزن طبقات که روی دیوار برشی تکیه دارد .

توجه : در صورتی که ارتفاع دیوار برشی کم باشد ، غالبا نیروی برشی حاکم بر طراحی آن خواهد بود لیکن اگر ارتفاع دیوار برشی زیاد باشد لنگر خمشی حاکم بر طراحی آن خواهد بود . به هر حال دیوار باید برای هر دو نیروی فوق کنترل و در مقابل آنها مسلح گردد.

طراحی دیوار برشی در مقابل برش :

اگر Vu تلاش برشی نهایی در مقطع مورد طراحی باشد بر طبق آیین نامه ایران باید Vu=5υchd=φchd(fc)^0.5  تعیین نیروی برشی مقاوم نهایی بتن :

الف- حالتی که دیوار تحت اثر برش یا تحت اثر تؤام برش و فشار قرار دارد Vc=υcbwd:

ب- حالتی که دیوار تحت اثر برش و کشش فرار دارد : Vc=υc(1+Nu/(3Ag))bwd (A)

در این رابطه کمیت Nu/Ag بر حسب ( N/mm^2 ) می باشد و Nuدر این رابطه منفی می باشد حال اگر محاسبه نیروی برشی مقاوم نهایی بتن ( Vc) با جزئیات بیشتر مورد نظر باشد آنرا برابر با کمترین مقدار به دست آمده از دو رابطه زیر در نظر گرفته می گیریم و Vc=1.65υchd + (Nud)/(5Lw)

وVc=(0.3υc+(Lw(0.6υc+0.15Nu/(Lwh)))/(Mu/Vu-Lw/2))hd Nu

نیروی محوری برای فشار مثبت و برای کشش منفی است چنانچه Mu/Vu-Lw/2 منفی باشد رابطه A بکاربرده نمی شود . نیروی برشی مقاوم نهایی Vc برای کلیه مقاطعی که در فاصله ای کمتر از کوچکترین دو مقدار Lw/2 و hw/2 از پایه دیوار قرار دارند برابر با مقاومت برشی مقطع در کوچکترین این دو مقدار در نظر گرفته می شود .

نیروی برشی مقاوم نهایی آرماتور ها (Vs) از رابطه زیر محاسبه می شود Vs = φsAvfy d/S2 Av  سطح مقطع آرماتور برشی در امتداد برش و در طول فاصله S2 می باشد چنانچه مقدار Av را در اختیار نداشتیم می توان Vs را از رابطه زیر به دست آورد  Vs=Vu-Vc سپس به کمک رابطه فوق Av را به دست می آوریم . برای تأمین برش مقاوم Vsعلاوه بر آرماتور های برش افقی Av آرماتور های برشی قائم نیز باید در دیوار پیش بینی شود آرماتور گذاری در دیوار مطابق زیر انجام می شود :

 

چنانچه Vu=0.0025 فاصله میلگرد های (S2 ) از هم نباید از مقادیر زیر بیشتر باشد : ρn= 3h Lw/5 350سطح مقطع کل بتن در امتداد برش / سطح مقطع آرماتور برشی در امتداد عمود بر برش نباید کمتر از 0.0025 و یا کمتر از مقدار زیر در نظر گرفته شود : ρn=0.0025+0.5(2.5-hw/Lw)( ρh-0.0025) لزومی ندارد  ρn>ρh در نظر گرفته شود . طراحی دیوار برشی در مقابل خمش : چنانچه ارتفاع دیوار برشی بلندتر از دو برابر عمق آن باشد مقاومت خمشی آن مشابه تیری که آرماتور گذاری آن در لبه های آن متمرکز است محاسبه می شود .

مقاومت خمشی Mu یک دیوار برشی مستطیلی نظیر دیوار برشی این چنین محاسبه می شود : Mr=0.5AsφsFyLw(1+Nu/(AsφsFy))(1-C/Lw) در رابطه فوق : Mr مقاومت خمشی نهایی دیوار :Nu  نیروی محوری موجود در مقطع دیوار: As   سطح مقطع کل آرماتور های قائم دیوار Fy  : تنش تسلیم فولاد :  Qs  ضریب تقلیل ظریب فولاد Lw  : طول افقی دیوار مقدار C/Lw از رابطه زیر به دست می آید C/Lw=(w+α)/(2w+0.85β1) مقدار β 1 از روابط زیر به دست می آید : Fc=55 N/mm^2

β1=0.65، w=As/(Lwh)*(φsFy)/( φcfc) φs=0.85 φc=0.6 a=Nu/(Lw*h*φcfc) h

عرض دیوار : Fc  مقاومت فشاری بتن ابتدا با توجه به آرماتور های قائم حداقل که به علت نیازهای برشی در دیوار تعبیر شده اند ظرفیت خمشی مقطع را به دست می آوریم . همواره باید ظرفیت خمشی بزرگتر یا مساوی نیروی خمشی نهایی دیوار باشد.

 ( Mr>=Mu) چنانچه ظرفیت خمشی کمتر از نیروی خمشی دیوار به دست آید باید یا با کاهش فواصل یا افزایش قطر آرماتور های قائم مقدار As آنقدر افزایش یابد تا خمش بزرگتر از لنگر خمشی مقطع گردد . شکست برشی لغزشی : در شکست برشی لغزشی ، دیوار برشی به طور افقی حرکت می کند برای جلوگیری از این نوع شکست آرماتورهای تسلیح قائم که به طور یکنواختی در دیوار قرار گرفته اند مؤثر خواهد بود و تسلیح قطری نیز می تواند مؤثر باشد . در قسمت زیر انواع مودهای شکست یک دیوار برشی طره ای گفته شده است : الف ـ گسیختگی خمشی ب ـ شکست لغزشی ج ـ شکست برشی د ـ دوران پی دیوارهای برشی با بازشو ها: شکست برشی یک دیوار برشی با بازشو ها ، اگرچه می توان با به کار بردن مقدار زیادی خاموت باعث اتلاف انرژی شد اما نمی توان انتظار شکل پذیری زیادی از آن داشت بنابراین بهتر است در چنین شرایطی از تسلیح قطری استفاده کرد .

مفهوم نمای شهری در معماری

شهر در گذر زمان همواره از پارامترهای مختلف کالبدی، اقتصادی، اجتماعی، فرهنگی و... تأثیر پذیرفته و در نسبت با آنها کلیت خویش را شکل بخشیده و انسجام بخشیده است.به اعتقاد صاحب نظران بسیاری مظهر و تجلی گاه ابعاد گوناگون وجودی شهر، سیما و پیکره کالبدی و کیفیات حاصل از آن –از جمله فضای شهری- می باشد. یکی از مهمترین اجزا و عناصر کالبدی شهری که به ویژه در نسبت با شهروند و تقویت حس مکان در فضای شهری مؤثر واقع می گردد، ترکیب نمای ساختمان ها و به عبارت دیگر "نمای شهری" است. به بیان دیگر " شهر زمینه بصری مشترکی است که همه شهروندان هر روز به ناگزیر در معرض آن قرار می گیرند و بایستی از آن استفده کنند. اگر این زمینه مشترک نمایی زشت و ناموزون داشته باشد، تأثیرات مخرب روحی و روانی بر استفاده کننده می گذارد."(1) بدین لحاظ نمای هر بنا در عرصه شهر جزئی از مجموعه ای می گردد که در کلیت خود خیابان، میدان و یا فضای شهری اطلاق می گردد. لذا دستیابی به آگاهی مناسب و متناسب با موضوع در فرایند نقد ضروری می نماید.

این گفتار بر این فرضیه استوار است که کیفیت مطلوب بصری و روانی نمای شهری در معماری و شهرسازی هر سرزمین به ابعاد جغرافیایی، محیطی، فرهنگی و اجتماعی شهر و شهروندان وابسته بوده و در پی اثبات صحت آن مفهوم نمای شهری و کیفیات آن را در سه موقعیت مکانی-زمانی "معماری اروپا" ، "معماری سنتی ایران" و "معماری معصر ایران" مورد بررسی قرار می دهد. در این فرایند، شیوه عملکرد و نحوه مواجهه معماری و نمای بناها با شهر و فضای شهری شناسایی شده و ارزیابی می گردد.


نمای معماری، نمای شهری

مبحث نما، نماسازی و طراحی نما در فرایند طراحی معماری بنا همواره از اهمیت بنیادین برخوردار بوده و این روال با کمترین نوسان تا دهه های اخیر در هنر معماری تداوم یافته است. تنها در دهه ها و سال های پایانی قرن بیستم بود که چالشی اساسی در تلقی مرسوم و متداول از نما در طراحی معماری بوجود آمد. علی رغم این، نما یکی از مؤثرترین عناصر تأثیرگذار بر کیفیت بصری یک بنا می باشد و شناخت اولیه هر فرد از بنا از این طریق صورت می گیرد. " بحث نما به مفهوم خاص آن از جایی شروع می شود که سطوح یا سطحی مهم و اصلی که به دلیل قرار گرفتن در معرض دید، بیشترین اطلاعات را در مورد حجم ساختمان ارائه می دهد، با آگاهی از خاصیت سطحی بودن و با فکر ارزش گذاری بر این خاصیت ایجاد می شود."(2)

صاحب نظران هر یک در نسبت با نمای ساختمان وظایف و انتظاراتی چون حفاظت، ایجاد ارتباط (بین درون و برون، خلوت و شلوغ، خصوصی و عمومی، طبیعی و مصنوع) ، معرفی بنا، تعریف یک جهت مشخص و... مطرح نموده اند که وجه مشترک همه آنها ارتباط با شهر و فضای شهری می باشد. بدین ترتیب نمای ساختمان در عرصه شهر نه در فردیت و استقلال بلکه در ترکیب و وحدت با سایر ابنیه در فضایی که خیابان یا میدان نامیده می شود به دیده می آید و مورد ارزیابی و سنجش قرار می گیرد. از این رو "نمای شهری نه از طریق یک معمار و در یک برهه زمانی خاص بلکه در طول زمان و بدست سازندگان متعددی شکل می گیرد."(3) نمای شهری دیگر حاصل کنار هم نهادن نماهای تک بناها در یک راستا نیست و در ترکیب خود مفهومی فراتر را در ابعاد زیباشناسی، نشانه شناسی، معناشناسی و حتی عملکردی و زیست محیطی عینیت می بخشد.


نمای شهری در معماری اروپا

کیفیت و خصوصیت نما در معماری اروپا همچون شهر و فضاهای شهری، با ابعاد فرهنگی-اجتماعی و محیطی-زیست محیطی آن گره خورده است. نوع نگرش به مبحث محرمیت و اشراف از یک سو و برخورداری از ویژگی های آب و هوایی اقلیم معتدل و مرطوب- که ایجاد کوران هوا در بنا و بهره مندی از حداکثر نور خورشید و تابش آفتاب در طول روز از الزامات آن است- منجر به شکل گیری گونه معماری «برونگرا» در گذر زمان شده است. می توان اذعان کرد که بیشترین تأثیرات ناشی از تحقق الزامات این گونه معماری در بناهای مختلف در نماها بوده است، بطوری که گشایش سطوح و منافذ متعدد در پوسته خارجی بنا در این راستا تلقی می گردد.

از سوی دیگر بطور تاریخی شهروند اروپایی همواره بازنمود علایق و تمایلات فردی خود را در اجتماعات مدنی و فضاهای متعلق به آن ها یافته است. این موضوع تقویت و ارتقاء کیفیت عرصه های عمومی را در شهرهای اروپایی به طرق مختلف در پی داشته است. از یک سو بنا رو به فضای شهری داشته و با حداکثر ظرافت های معمارانه در طراحی نما از جمله کیفیت و کمیت بازشو ها، پیش آمدگی ها و عقب رفتگی ها و... با شهر ارتباط متقابلی را برقرار می نمود؛ و از سوی دیگر اگرچه هر بنا سعی در ارائه بهترین کیفیت در فاساد یا نمای اصلی را دارد، اما ساختمان ها در عین تنوع شکلی، دارای هماهنگی نسبی با یکدیگر بودند. این گونه است که در عین حال که پنجره در معماری گذشته اروپا همواره نقش رابط بصری دو سوی خود یعنی برون و درون را ایفا می نمود، نماهای شهری نیز بواسطه " به کارگیری عناصر مشابه و ترازهای افقی یکسان و خصوصاً به خاطر تعلق به گونه شناسی واحد دارای انسجام و هماهنگی در خور تحسین بودند."(4)

بنابراین به نظر می رسد واژه «نمای شهری» در معماری اروپا مفهومی دیرپا است و از عناصر ثابت و پایدار تحولات تاریخی شهرسازی دوره های مختلف به شمار می آید که همواره ماهیتی یکسان داشته و تنها بر حسب موقعیت زمانی-مکانی ویژگی های کالبدی-معنایی متفاوتی را پذیرفته است. بدین گونه است که پس از قرون وسطی" توجه به معماری زمینه به شدت اهمیت یافته و به یکی از اصول مهم طراحی شهری بدل می گردد" (5). " شهروند دوره رنسانس با آنکه از خدامحوری به انسان محوری روی آورده بود، ولی اعتقاد داشت که بر جهان و طبیعت نظمی حاکم است و او و خانه اش می بایستی به عنوان جزئی کوچک از جهان و طبیعت، این نظم را پاس داشته، هندسه پنهان را رعایت نمایند"(6) و حتی در حالت افراطی آن، آنچه را که در ورای فرم و ظاهر ساختمان وجود دارد را فاقد اهمیت تلقی می نمود. پس از رنسانس نیز در دوره باروک " ساختمان خود را تابع فضای عمومی بالاتری می دانست و به نفع کلیت از عرض اندام فردی خودداری می کند"(7).

تصویر1 – پلازای دل کامپو، سی ینا

اما کیفیت نمای شهری از انقلاب صنعتی و بیشتر از اواسط قرن نوزدهم به این سو و در پی پیدایی امکانات جدید در انتخاب مصالح و برپایی سازه های مختلف دستخوش تحولات گسترده ای شده و به سوی اغتشاش بصری گام بر می دارد. با ادامه این فرایند در دوره مدرن، ساختمان دیگر چون گذشته و بصورت منفرد در فضای متداوم و بی کران  استقرار یافت و دیگر در طراحی نما به زمینه و ساختمان های پیرامون توجهی نشد. با این وجود همواره مباحث تئوریک مختلفی در نسبت با نمای شهری در دوره معاصر مطرح شده که بیان کننده اهمیت آن در عرصه معماری غرب می باشد، هرچند دستاورد های موجود در مقایسه با نمونه های تاریخی از کیفیت کمتری برخوردارند.


نمای شهری در معماری تاریخی ایران

در نگاه نخست، بارزترین مشخصه معماری ایران بویژه پس از ظهور اسلام-که آثار و عناصر معماری بیشتری از آن به یادگار مانده است- "درون گرایی" دانسته می شود. این خصیصه هم از آداب، رسوم و سنت های فرهنگی مردم این سرزمین ناشی شده و هم ریشه در ویژگی های اقلیمی محیط و الزامات تبعی آن دارد. شکل گیری عناصر و فضاهای معماری در پیرامون یک حیاط اندرونی و مرکزی که هرگونه اشراف بصری را ناممکن می سازد و طبیعتی محصور و کنترل شده را در اختیار بهره برداران و ساکنین قرار می دهد، از تأثیرات درون گرایی بر سازماندهی فضایی عناصر و ابنیه سنتی بوده است. ترکیب حاصل از هم جواری واحدها و سلول های معماری در سطح یک محله به شکل گیری بافتی می انجامد که رو به درون دارد و با ساختاری ارگانیک و گذرهای تودرتو و پیچ در پیچ ارتباط عملکردی و فضایی آن با محلات همجوار و یا فضای مرکزی محله یا شهر برقرار می گردد.

نظام ساختمانی در محلات مسکونی "به ترتیبی است که نمودی از شکل بندی فضاهای داخلی در نمای خارجی دیده نمی شود و کمتر بازشویی را در معبر پذیرا می گردد"(8). بدین ترتیب در گذار از گذرهای محله شهرهای سنتی ایران، نماها به دلیل خصلت درون گرایی ابنیه دارای کمترین تنوع بصری بوده و "عناصر عمده ترکیب نما در محلات مسکونی را به طور عمده سطوح صاف دارای اندود خشت و گل تشکیل می دهند که گاه عناصر ورودی به فضای داخل مسکن آن را قطع می کند"(9). بدین ترتیب " وحدت در نظام ساختمانی، عناصر و قواعد ترکیب نما در محلات مسکونی دوره کهن که همراه با رعایت ابعاد و تناسبات یکسان (استفاده از پیمون در طرح واحدهای مسکونی) بوده است، سبب شده است که نماهای محلات مسکونی از تجانس کامل برخوردار باشند بطوریکه هیچ قسمتی مزیت و تفتوتی با قسمت های دیگر نداشته باشد"(10). این قاعده شکلی نما، تنها در حالتیکه به یک میدان گاه یا فضای باز با عملکرد مرکز محله ای یا شهری می رسد تغییراتی را به خود می پذیرد. "این میدان گاه مکانی است که کوچه های اصلی و گذرهای عمده بدان می رسند و از آن ره می برند. در اطراف این میدان گاه معمولاً گرمابه، مسجد و مدرسه، آب انبار و بازارچه قرار می گیرد."(11) نمای شهری در این فضا از تنوع زیباشناختی بیشتری برخوردار بوده و مناظر شهری متفاوتی را در نسبت با گذرهای منتهی با ان ارائه می نماید. "درحالی که در محلات مسکونی، اجزا و عناصر شهری به گونه ای ترتیب یافته اند که با سادگی، بی پیرایگی و با رنگ ملایم خاکی خود، شخص را به رفتن و رسیدن به مقصد و مقصود هدایت می کنند، در نماهای عمومی شهری نحوه ترکیب عناصر و اجزا با ترکیبات متنوع، با رنگ و تزیینات و... در هر مورد به گونه ای متفاوت و متناسب با منظوری است که فضا برای ان خلق شده است."(12) این در حالی است که "مطالعات نشان می دهد که بدنه حیاط های قدیمی ایران علی رغم تقارن محوری در بیشتر موارد، در مقایسه با بدنه محصور کننده فضای میدان ها از تنوع شکلی بیشتری برخوردار بوده است"(13)، که این خود از درون گرایی معماریی ایرانی و اهمیت فزون تر فضای درون بر فضای برون ناشی می گردد. زیرا به طور کلی در" فرهنگ درون گرا «نما» و «نمایش» مذموم بوده و تأکید و تزیین در نمای بیرونی بسیار محتاطانه بود و حداکثر در اطراف درب ورودی شکل می گرفت."(14)

برخورد محتاطانه با نمای شهری در معماری و شهرسازی ایران در دوره صفویه و بویژه در زمان شاه عباس صفوی رویکردی متفاوت یافته و اندک اندک متحول می گردد و زمینه ای برای پیدایی و ورود عناصر و مفاهیم جدید، در عین پذیرش و احترام به اصول و روش های دیرین فراهم می آورد. "آنچه در این دوران بر مفاهیم قبلی اضافه شده و به نعبیری روشن ابداع می گردد، پیدایش مفهوم «خیابان» در مقابل «بیابان» است که یا راه به میدان اصلی شهر می برد و یا اینکه به موازات آن کشیده می شود. این خیابان با توجه به شرایط اقلیمی در کناره های خود درختان بیشماری دارد که بنا به نوع قرارگیری در محیط بیرونی «چهارباغ» و یا «چنارستان» نام می گیرد".(15) در این دوره اصفهان، پایتخت دولت متمرکز و قدرتمند صفوی، به عنوان نماد شیوه ای از معماری و شهرسازی که به همین نام خوانده می شود، پذیرای مفاهیم جدیدی در عرصه کالبدی شهر می گردد.

از یک سو میدان و مرکز اصلی شهر به شیوه ای سازماندهی و طراحی می شود که در آن فارغ از اینکه هریک از چهارگانه پیرامون آن- بصورت خاص- چه ویژگی های معماری را عرضه می دارند، نما و نمایش بارزه فضایی اصلی میدان بوده و استقرار عناصر و ورودی های آن ها در بدنه های میدان نیز، نوعی ارتباط متقابل و چندگانه را در ابعاد زیباشناختی و معناشناختی بین ان ها برقرار می نماید. از سوی دیگر محور شهری چهارباغ واژه ای جدید را در متن شهر وارد نموده و از این ره در مقابل محور خطی، ارگانیک و درون گرای بازار در استخوان بندی شهر محور خطی، مستقیم و ذاتاً برون گرای جدیدی با ماهیت و الزامات متفاوت را در شهر مطرح می نماید. "از این پس، معماری نه در حد بناهای منفرد بلکه در حد مجموعه های شهری مطرح می گردد. معماری شهری و ایجاد و خلق فضای شهری هدف اصلی شهرسازی مکتب اصفهان است".(16) بدین گونه است که در اصفهان دوره صفوی حتی پل ها نیز به عنوان عناصری شهری تلقی می گردند و در جهت ارتقاء کیفی منظر شهری به کار گرفته می شوند. در این دوره "اگرچه به دلیل نحوه خاص شکل گیری نماهای شهری، نماهای بناهای عمومی نه در پیوستگی بلکه در توالی قابل مشاهده اند، اما به دلیل وحدت شکلی بین بدنه های شهری متصل کننده بناهای عمومی یعنی میدان ها، بازار، خیابان و ... با این بناها، تجانسی کامل در نماهای شهری دیده می شود".(17)

تصویر2- میدان نقش جهان اصفهان و نظلم استقرار عناصر در بدنه های آن


نمای شهری در معماری معاصر ایران

روند تحولات معماری معاصر ایران مبین گذار از درون گرایی به برون گرایی، خصوصی به عمومی، درون زایی به برون زایی و تمرکز به تشتت است. این دوره که از اواخر دوره حکومت قاجاریه و بویژه پس از سفرهای ناصرالدین شاهبه فرنگ به این سو قابل بررسی است، ریشه های خود را از مکتب اصفهان و عناصر معماری و شهرسازی ان می گیرد و با تلفیق عناصر و مفاهیم وارداتی از فرنگ با آن، نوعی معماری التقاطی با تکیه بر مفاهیم درونی پدید می آورد که سبک تهران اش می نامند. در دوره قاجار معماری رسمی به تبع تجدد طلبی چهره ای برونی می یابد و خیابان در مفهوم جدید خویش لبه های خود را برای جایدهی عناصر خدماتی بر می گزیند. "پدیده ای که در ایران به آن معماری خیابانی اطلاق می گردد، معماری ای است که در تعامل با خیابان و با داشتن توجه به نمای رو به خیابان شکل گرفته است. این پدیده برای نخستین بار در محور چهار باغ اصفهان ظاهر شد اما تنها در دوره قاجار به طور سیستماتیک شکل گرفت".(18) بدین ترتیب در حالی که "خیابان در مکتب اصفهان عملکرد تفرجی دارد اما در سبک تهران به عنوان یک فضای شهری با هویت و زنده خود را مطرح می کند".(19) لذا در معماری که تا این زمان اساساً درون گرا بوده و خانه های مسکونی آن برای ایجاد ارتباط با بیرون متکی بر حیاط مرکزی بودند و کمتر به نمای بیرونی رو به معبر توجه می نمودند، تدریجاً به تقلید از معماری اروپا و با استقرار عناصر در لبه های خیابان های جدیدالاحداث، نماهایی شکل گرفتند که علی رغم غیربومی و نوظهور بودن تقارن و هارمونی مناسبی داشتند و همین امر نوعی وحدت و یکپارچگی به نمای خیابان می بخشید. بدنه میدان توپخانه و خیابان های لاله زار و باب همایون نمونه های مناسبی در این زمینه هستند.

تصویر 3- ساختمان تلگرافخانه در جبهه جنوبی میدان توپخانه

با آغاز حکومت پهلوی فرآیند تحولات معماری و شهرسازی  کشور تغییری ماهوی یافته و "برای اولین بار در تاریخ شهرنشینی و شهرگرایی کشور، دولت بر آن می شود چهره شهر را نه بر مبنای تفکر و تحول درونی بلکه بر اندیشه و تغییری برونی دگرگون سازد".(20) در پی آن، دخالت های هوسمان گونه ای در سازمان فضایی شهر کهن صورت می گرد و" به عکس آنچه در تاریخ دگرگونی های شهر، تا این زمان مرسوم می بوده است، دگرگونی های کالبدی در درون آن جستجو می شود نه در ورای سازمان و بافت موجود شهر، این دخالت الگوی خویش را از دگرگونی های کالبدی-فضایی حادث شده در شهر قرن نوزدهمی-شهر صنعتی- می گیرد".(21) این نگرش که کمترین توجهی به سنن و رسوم کهن مردم ندارد نوعی معماری را در لبه خیابان-به عنوان نماد تجدد- ترویج می نماید که بی هیچ ملاحظه ای به یکباره همه قواعد و معیارهای آزموده شده و اندیشیده شده معماری و شهرسازی بومی را نادیده می گیرد و بیشترین بازشوها را بدون ایجاد هرگونه فضای بینابینی به روی معبر می گشاید. این معماری عموماً با فرهنگ درون گرای مردم در تعارض بوده و ساکنین اغلب زندگی خصوصی خود را در پس پرده های ضخیم مخفی می نمودند.

به موازات این نگرش و تداوم و تشدید آن در سال ها و دهه های بعد به ویژه با رونق یافتن بخش ساختمان در دهه 1350، توجه به معماری زمینه هر روز کنتر شده و اغتشاش و نابسامانی های بصری در بدنه خیابان ها افزایش یافت. در این حالت هر بنا به عنوان یک طرح مستقل معماری و جدا از سایر بناها در بدنه خیابان تلقی شده و بی توجه به پارامترهای کیفیت نمای شهری طراحی و اجرا گردید. امری که علی رغم تحولات گسترده اجتماعی-فرهنگی و علمی-آموزشی همچنان ادامه یافته است.

نتیجه گیری

بررسی تطبیقی سیر تحولات تاریخی حول موضوع مورد نقد بازگوکننده دلایل و ریشه های تفاوت دیدگاه ها و رویکردهای موجود در موقعیت های مکانی-زمانی مختلف می باشد.بر این اساس مفهوم نما در معماری اروپا همواره در نسبت با شهر مطرح بوده و از عناصر اصلی و هویتی شهر به شمار می آمده است. بدین لحاظ در این پهنه سرزمینی نمای شهری و کیفیت آن در یک فرآیند تاریخی نه ایجاد بلکه همواره در معرض نقد و نظریات جدیدی قرار گرفته و مکرراً اصلاح و تکمیل شده و ارتقاء یافته است. در حالیکه معماری بومی ایران مبتنی بر درون گرایی و پرهیز از هرگونه ارتباط بصری (کنترل نشده) با فضای بیرون (شهر) می باشد. با اتکاء به این اصل، در طول قرن ها آثار و عناصر شاخص و ارزشمندی بنا شده اند که واجد بهترین کیفیت کالبدی-فضایی می باشند اما دارای کمترین نمود و نمایش در نسبت با شهر و فضای شهری هستند. گسست از این اصل و اتکاء به بیرون به جای نگرش به درون در قرن اخیر، به دلیل فقدان سابقه تاریخی و درک نامناسب تحولات حادث شده در غرب، نتایج مخربی در عرصه شهر معاصر ایران در پی داشته است، به طوری که نتوانسته محملی مورد قبول برای پاسخ گویی به الزامات محیطی، فرهنگی، اجتماعی جامعه فراهم آورد.

روشهای نوین ترمیم سازه های بتنی

 
خوردگی یکی از مؤثرترین فاکتورها در تعیین عمر اقتصادی برای ساختمانها می باشد. خوردگی نتیجه یک سری فعل و انفعالات شیمیایی در بتن و آرماتور ها می باشد. در بتن آرماتورها توسط بتن، محافظت می گردد. (PH=13) بالا که از خصوصیات بتن می باشد PH بالا کاهش یابد، محافظت بتن از روی آرماتورها حذف می گردد. این جزء از PH زمانی که این مقاطع بتنی زنگ می زند،این زنگ زدگی باعث افزایش حجم میلگردها می گردد که این موضوع موجب ایجاد ترک در مقطع به موازات میلگردها خواهد شد. زمانیکه بتن ترک خورد میلگرد به طور کامل در معرض اثرات جوی و عوامل خوردگی قرار می گیرد که این خود باعث کاهش عمر ساختمان خواهد گردید.

از عوامل دیگر خوردگی در بتن یک واکنش شیمیایی با نام کربناسیون در مقطع بتنی است که عامل آن یون های فعال کلسیم که ناشی از هیدراسیون سیمان است، می باشد. این یون های فعال به سرعت با گازهای جو و رطوبت هوا واکنش انجام داده و باعث ایجاد ترکیبات شیمیایی پیچیده می گردد که سبب تغییرات در مشخصات مقطع واحد گردید. این زنجیره از واکنشهای شیمیایی به سرعت بتن را کاهش داده و بنابراین باعث شروع خوردگی در میل گردها می گردد. در ادامه PH سیمان نیز خواص خود را از دست می دهد و قابلیت تحمل خمش در آن به شدت کاهش می یابد. در واقع یک روش ترمیم بتن است که برای مقاطع بتنی که مقاومت خود را در اثر Izo-BTS خوردگی از دست داده اند و یا آنکه در هنگام اجرا در اثر عدم دقت کافی به مقاومت مورد نظر نرسیده اند و یا در اثر زلزله دچار تخریب شده اند، استفاده می گردد.

با توجه به مراحل کار در این روش ابتدا قسمتهای ضعیف مقطع بتنی که مقاومت لازم را ندارند توسط روشهای مکانیکی تخریب می گردد که لازمه آن، در ابتدای کار قبل از تخریب، تعیین عمق دقیق نفوذ خوردگی در مقطع است که توسط آزمایشات خاصی این عمق و نواحی که ترمیم باید در آن انجام شود مشخص می گردد. ترمیم می گردد، این ماده در مرحله بعد سطح بتن توسط ماده ای خاص با نام IZOMET-BRM دارای شباهت زیادی با بتن می باشد اما قابلیتها و خواص آن چه به لحاظ مشخصات ساختمانی و چه به لحاظ مقاومت در برابر عوامل خوردگی بسیار بالاتر از بتنهای معمولی است.

● تقویت.سازه.های.بتنی

هدف در این روش مقاوم سازی سازه ها در مقابل زلزله و یا بالا بردن مقاومت سازه بنا بهنیازمواردی همچون تغییر کاربری ساختمان و یا اشتباه درمحاسبات اولیه طراح می باشد. در این روش علاوه بر بدست آوردن مشخصات مورد نظر به لحاظ ساختمانی مسایل معماری ساختمان و زیبایی بنا نیز مد نظر است بدین صورت که در این روش بعد از اتمام کار سطح مقطع اجزا ساختمان تغییراتی نخواهد داشت. روش کار بدین صورت است که یک سری ورقهای فولادی با توجه به محاسبات انجام شده و مقاومت موردنظر از خارج مقطع توسط یک نوع Steel-plates اپوکسی خاص به مقطع اضافه می گردد. طراحی این فولادها و مقادیر آن با توجه به محاسبات اولیه ساختمان و نیز مشخصاتی از مقطع که در نظر داریم به آن برسیم انجام می گیرد. مراحل انجام کار و نیز مواد استفاده شده به صورتی است که بعد از پایان مقطع جدید و قدیم به خوبی با یکدیگر کار می کنند.

آرماتورهای غیر فولادی در بتن

 
در سال های اخیر استفاده محدودی از آرماتورهای غیر فلزی آغاز گشته است هر چند تحقیقات بر روی کاربرد وسیعتر آنها و عملکرد دراز مدت این نوع آرماتورها ادامه دارد این آرماتورها که معروف به آرماتورهای با الیاف پلاستیکی (
FRP) هستند از الیاف مختلفی چون الیاف شیشه ای (GFRP) الیاف آرامیدی (Afrp) والیاف کربنی (CFRP) در یک رزین چسباننده تشکیل شده اند.
خاصیت عمده این آرماتورها که سبب کار برد آنها شده است مقاومت در برابر خوردگی آنهاست که  می تواند در محیط های بسیار خورنده دوام دراز مدتی داشته باشند. علاوه بر این مقاومت بالا، مقاومت به خستگی بالا، ظرفیت بالای تغییر شکل ارتجاعی، مقاومت الکتریکی زیاد و هدایت مغناطیسی پایین و کم این مواد از مزایای آنها شمرده می شود. البته این مواد معایبی چون کرنش گسیختگی کم و شکننده بودن و خزش زیاد و تفاوت قابل ملاحظه ضریب انبساط حرارتی آنها در مقایسه با بتن را به همراه دارند.
اخیراً از الیاف مختلف شبکه هایی بافته شده و به صورت یک شبکه آرماتور در سطح بتن برای کنترل ترک و کم کردن عرض آن و همچنین در دیوارهای نمای بتنی ازآن استفاده می کنند. تحقیقات روی کاربرد صفحات الیافی به جای صفحات فولادی برای تقویت قطعات خمشی و تیرها و دال ها به ویژه در پل ها ادامه دارد. این صفحات با رزین های اپوکسی به نواحی کششی از خارج اتصال داده می شود. کاربرد صفحات با الیاف کربنی برای این تقویت بیشتر رایج گشته و در چندین پل در ژاپن و در بعضی کشورهای اروپایی از آن استفاده شده است.

بتن، سنگ دست ساز

 
اولین کار خانه سیمان در شهر ری در تاریخ 1312 با ظرفیت 100 تن در روز آغاز به کار کرد و تولید خود را در سال 1346 به 600 تن در روز رساند و بنابر آغاز دوره ساخت‌وساز در ایران جوابگوی نیازهای کشور نبود، در نتیجه به دنبال آن کار خانجات دیگری ساخته شد.

بتن اصطلاحا به مواد سختی گفته میشود که اساسا از بهم چسبانیدن سنگدانه‌ها توسط مواد واسطه‌ای نظیر انواع سیمان و آب بدست آمده‌باشد. بتن به علت شرایط خاص، آثار تخریب زیست محیطی نداشته و نسبت به دیگر مواد نظیر آهن و آلومینیوم، با کمترین میزان مصرف انرژی و آلودگی محیط و هزینه و به علت استفاده از مواد آماده طبیعی هماهنگ و پایدار ی و با دوام بیشتری نیز برخوردار است.

عواملی که باعث کاربرد بتن در ساختمان به جهت توسعه و رشد استفاده از آن است، عبارتند از:

1. کیفیت بتن: خواصی همچون مقاومت در برابر فشار بار‌های وارده و دوام در مقابل تاثیرات عوامل خارجی مانند یخ زدگی، گرما، رطوبت، خوردگی و مواد شیمیایی و...، همچنین حفظ ابعاد به لحاظ انبساط و انقباض....

2. کارآیی مناسب: بتن هنگام اجرا نباید نباید آنچنان سفت باشد که نتوان آن را قالب‌گیری کرد و آنقدر شل که دانه‌های شن و ماسه ته‌نشین شود و بلافاصله بعد از آماده شدن باید به اجرای آن اقدام کرد و در همه جا با دست یا ماشین‌آلات قابل تهیه است.

3. قابلیت طراحی: بتن از نظر نوع کاربری، آب و هوا، محیط، رنگ و شکل و محدود نیست و به هرشکل و هرحجم که نیاز باشد می‌توان آن را طرح و استفاده کرد. یعنی برای هر نوع کاربری سیمان یا افزودنی‌های خاص خود را داراست.

نحوه بتن ریزی و نگه داری بتن: بتن باید هرچه زودتر در محل خود ریخته شود تا سفت نشود و یا تراکم دانه‌بندی آن بهم نخورد (یعنی دانه‌بندی آن ته‌نشین نشود)؛ میزان روان بودن بتن عامل بسیار مهمی است که اگر متناسب با نوع کار نباشد بتن کارآیی خود را نخواهد داشت یعنی اگر بیش از حد سفت باشد بتن در اصطلاح کرمو خواهد شد و آن بتن باید تخریب شود زیرا مقاومت لازم را نخواهد داشت. محل بتن ریزی باید از مواد زاید عاری و کاملا تمیز باشد. قالب‌ها باید روغن کاری شود که به بتن نچسبد. مصالح بنایی که در مجاورت و یا تماس با بتن خواهد بود، قبل از بتن‌ریزی باید خوب خیس شود، چون اگر خشک باشند آب شالوده بتن را بخود جذب می‌کنند و بتن با فقر آب مواجه خواهد شد و در آن محل ترک خواهدخورد. میلگرد‌هایی که داخل بتن قرار می‌گیرند باید کاملا پاک باشند و پوسته نداشته باشند. بتن درشت دانه نباید از ارتفاع بیش از دومتر فرو ریزد؛ بیش از حد نباید آن را ویبره کرد، چون ویبره کردن بیش از حد باعث می‌شود که دانه‌های بتن ته نشین شوند.

بتن پس از اجرا نیاز به نگهداری دقیقی دارد تا زمانی‌که به گیرایی و مقاومت نهایی خود برسد، دارد؛ در زمستان علاوه بر افزودن ضد یخ باید حتی‌المقدور با نایلون روی آن را پوشاند و حتی در بعضی موارد آن را گرم کرد که یخ نزند و در فصل گرما آن را به موقع آب‌پاشی کرد و گاهی در مناطق گرمسیر با پودر یخ روی آن را خنک نگه میدارند که در هنگام گیرایی اولیه سریعا آب خود را از دست ندهد و ترک نخورد. بتن پس از اجرا تا چند ساعت مانند کیک دارای سطح رویی سفت و باطن نرم و خمیری است و نباید روی آن راه رفت ویا بار گذاری کرد. اگر بتن درست و اصولی زیرنظر کارشناسان مجرب اجرا شود و قبل از اجرا نظارت کافی بر روند تولید آن اعمال گردد، بهترین مصالح است ولی اگر در ساخت و اجرای آن کوتاهی شود بدلیل مخفی ماندن بسیاری از معایب می‌تواند مشکلات جبران ناپذیری ببار بیاورد!

بتن را علاوه بر نوع کاربری بر حسب عیار سیمان موجود در آن می‌شناسند؛ یعنی به عنوان مثال میگویند که بتن فونداسیون با عیار 250 کیلو گرم سیمان در متر مکعب با سیمان ضد سولفاته اجرا شود، البته جداولی برای ساخت بتن وجود دارد که قطر دانه‌بندی‌ها، درصد شن‌وماسه، درصد افزودنی‌ها، و میزان آب مورد نیاز در آن ذکر شده است که به آن طرح اختلاط می‌گویند.

درز انبساط و درز انقطاع چیست؟

درز انبساط :

برای جلوگیری از خرابیهای ناشی از انبساط و انقباض ساختمان بر اثر تغییر درجه حرارت محیط خارج یا جلوگیری از انتقال بار ساختمان قدیمی مجاور به ساختمانی که جدید احداث می شود ، همچنین در مواردی که ساختمان بزرگ است و از چند بلوک متصل به هم تشکیل می شود ، باید به کار بردن درز انبساط در محل مناسب پیش بینی شود . حداقل فاصله ای از ساختمان با اجزای ساختمانی که باید در آن درز انبساط پیش بینی شود ، به نوع ساختمان ، تعداد طبقات ، مصالح مصرفی و آب و هوای محل احداث بستگی دارد ؛ بنابراین باید با مطالعه کافی محل اندازه آن را مهندس طراح تعیین کند. در کلیه ساختمانهای فلزی که طول آنها بیشتر از  50  متر باشد ، باید در طول ساختمان درز انبساط پیش بینی کرد .

این طول مربوط به ساختمانهای فلزی و بدون پوشش محافظ است که نباید از  50  متر و یا در ساختمانهایی با پوشش محافظ  و در حالات خاص نباید از یکصد متر تجاوز کند. برای پوشاندن و پر کردن فواصل درز انبساط از مواردی استفاده می کنند که قابلیت ارتجاعی داشته باشد . باید دقت شود که فاصله درز انبساط به هیچ وجه با مصالح بنایی یا ملات پر نگردد. اگر در هنگام استقرار اسکلت فلزی ، ستونهایی که در مجاورت یک درز انبساط قرار دارند ، به طور موقت به وسیله قطعات فلزی متصل شده اند ، پس از استقرار ، باید این اتصالات بریده شوند تا ساختمان در محل درز انبساط به کلی از قسمت مجاور خود جدا باشد.

درز انقطاع  :

برای جلوگیری از خسارت و کاهش خرابی ناشی از ضزبه ساختمانهای مجاور به یکدیگر ، بویژه در زمان وقوع زلزله ، ساختمانهایی که دارای ارتفاع بیش از  12  متر یا دارای بیش از  4  طبقه هستند ، باید به وسیله درز انقطاع از ساختمانهای مجاور جدا شوند ؛ همچنین حداقل درز انقطاع  در تراز هر طبقه برابر  100/1  ارتفاع آن تراز از روی شالوده است . این فاصله را می توان در محلهای لازم با مصالح کم مقاومت که در هنگام زلزله در اثر برخورد دو ساختمان به آسانی مصالح مزبور خرد می شوند ، پر کرد.

طراحی داخلی چیست؟

طراحی داخلی (Interior Design) که به عنوان یک حرفه، یک هنر و یک صنعت در دنیا شناخته شده، بهینه­سازی فضاهای داخلی ساختمان­ها به منظور انجام فعالیت­های روزمره یعنی زندگی و کار است.

بخش اعظم عمر ما در فضاهای داخلی بناها سپری می­شود. این فضاها محیطی را ایجاد می­کنند که پاسخ­گوی نیازهای اساسی ما نظیر نیاز به سرپناه بوده و بسیاری از فعالیت­های ما در آن صورت می­گیرد. همچنین آنچه به یک بنا روح می­بخشد، فضای داخلی آن است. بنابراین می­توان گفت کیفیت فضای داخلی از یک طرف تأثیر مستقیمی بر نحوه انجام فعالیت­های ما در آن دارد و از طرف دیگر نگرش، احوال و شخصیت ما را تحت تأثیر قرار می­دهد. بر این اساس، هدف طراحی داخلی، بهبود عملکرد فیزیکی و روانی فضا برای راحت­سازی زندگی در آن است. فضای معماری بدون طراحی داخلی یا اصلاً قابل استفاده نیست و یا در صورت قابل استفاده بودن، کارآیی لازم و بهینه را نخواهد داشت.

طراحی داخلی زندگی همه آحاد جامعه را تحت تأثیر قرار می­دهد و تأثیرات آن در زندگی به وضوح قابل مشاهده است. از این­رو موضوع طراحی داخلی به هیچ وجه محدود به اقشار مرفه و خانه­های اعیانی نیست. طراحی داخلی می­تواند برای کل جامعه و طبقات کم­درآمد هم مفید باشد. اگر قناعت را اصل اساسی امروز جامعه بدانیم و قصد داشته باشیم امکان زندگی راحت را در فضای 40 یا 60 متری آپارتمان­ها فراهم کنیم، طراحی داخلی یک ضرورت گریزناپذیر خواهد بود. طراحی داخلی می­تواند به ما نشان دهد که در این فضای کوچک چطور و با چه وسایلی باید زندگی کنیم.

از آنجا که طراحی داخلی در ارتباط مستقیم با ویژگی­های روحی ـ روانی انسان قرار دارد، بایستی برای نیل به یک طرح مطلوب، ویژگی­های رفتارهای انسانی در فضاهای داخلی زیستی اعم از عمومی و خصوصی، در طراحی به دقت مورد توجه قرار ­گیرد. از این­رو طراح به هنگام طراحی فضای داخلی با دو مقوله سروکار دارد: کاربرد آن فضا، و احساس و تأثیری که می­خواهد آن فضا بر استفاده­کننده داشته باشد.

طراحی داخلی طیف گوناگونی از عناصر و مؤلفه­ها از قبیل فرم، نور، رنگ، بافت، کف، سقف، دیوار، عناصر کارکردی و تزیینی و مبلمان را در برمی­گیرد. این عناصر ابزارهای کار طراح هستند که همگی باید بطور هماهنگ و متناسب در یک طرح مرتبط و خوشایند قرار گیرند.

طراحی داخلی که در حد واسط میان معماری و طراحی قرار می­گیرد، به همان میزان که شامل جنبه­های کاربردی، ساختاری و فنی می­شود، طراحی تجسمی و جنبه­های بصری و زیبایی­شناسانه را نیز در بر دارد. از این­رو طراحی داخلی اغلب در ردیف هنرهای تجسمی به حساب آمده است و برای موفقیت در آن، بایستی تا حد نسبتاً زیادی با عناصر و اصول طراحی تجسمی و مبادی سواد بصری آشنا بود.

اگرچه طراحی داخلی امروزه به عنوان یک تخصص شناخته می­شود و محدوده بسیار وسیعی را در بر می­گیرد، اما از آنجایی که این رشته در ارتباط مستقیم با فضای داخلی خانه و زندگی روزمره می­باشد، شناخت الفبای طراحی داخلی و تبیین مبانی آن به زبان ساده برای عموم مردم و بویژه زنان خانه­دار، به قابل فهم کردن آن و برخوردی علمی با این پدیده خواهد انجامید و در نهایت تأثیری عمیق بر کیفیت فضاهای زیستی جامعه ما خواهد داشت. از این­رو بنا داریم طی یادداشت­هایی به مباحث مختلف طراحی داخلی بپردازیم و با بهره­گیری از اصول طراحی تجسمی و سواد بصری و نیز با استناد به نمونه­های موفق طراحی داخلی خانه در سطح جهان، دانش و آگاهی افراد خانواده را در این خصوص افزایش دهیم. در این یادداشت­ها سعی خواهیم نمود با ذکر نکات کلیدی و کاربردی در مورد کیفیت فضاهای داخلی خانه، شما را نسبت به محیط و فضای اطرافتان و عناصر موجود در آن حساس­تر کنیم و توانایی­های علمی و کاربردی شما را در زیباسازی محیط خانه و بهبود کیفیت فضاهای آن افزایش دهیم.