فتح الله شفیعی

مهندسین عمران روستای بردکوه

فتح الله شفیعی

مهندسین عمران روستای بردکوه

عوامل تخریب بتن و راه کارهای ترمیم بتن

عوامل تخریب بتن و راه کارهای ترمیم بتن

این مقاله ترجمه ای از فصل سوم کتاب THE GUID CONCRETE REPAIR که توسط کارشناسان...

این مقاله ترجمه ای از فصل سوم کتاب THE GUID CONCRETE REPAIR که توسط کارشناسان و مهندسان دایره تعمیرات و اصلاح دفتر خدمات فنی و مهندسی وزارت کشور ایالات متحده آمریکا U.S department of the interior bureau of reclamation technical service centerو به منظور استاندارد سازی متد های ترمیمی بتن به صورت موضوعی و مصور تهیه و منتشر گردیده است.

کلینیک بتن ایران در راستای ارتقا آموزشی فعالان ، مهندسان و کارشناسان در زمینه مقاوم سازی و ترمیم سازه های بتنی، که دایره ی وسیعی از مشاوران و بهره برداران واحدهای صنعتی که سازه های بتنی سنگین ، از قبیل کانال های سر ریز سد ها ، سیلو ها، مخازن و تصفیه خانه ها ، کلاریفایر ها و کولینگ تاور ها، حوضچه های اسید و ... زیر نظر آنان می باشد تا کارشناسان و مدیران پروژه و کارفرمایان دولتی را در بر می گیرد ، با اجازه مترجم ، متن حاضر را ارائه نموده است.

این فصل از کتاب به علل و عامل آسیب ها و خرابی های شایع در سازه های بتنی می پردازد و به صورت خلاصه اشاراتی به نحوه ترمیم و حل مشکلات ناشی از این صدمات می پردازد.

علل تخریب بتن

علل شایع آسیب به بتن تعمیراتی در این فصل مورد بحث قرار گرفته است. بحث درمورد هر عامل آسیب عبارت است از:

1- شرح علت و چگونگی آسیب رساندن آن به بتن

2- بحث و یا تهیه ی فهرستی از روش های مناسب و مواد لازم برای تعمیر آن نوع خاص از آسیب بتنی

شاکله ی این فصل را شناخت اهمیت تعیین علت آسیب رسیدن به بتن قبل از انتخاب روش تعمیر تشکیل می دهد. انتظار می رود که بحث های مشروح انتخاب روش تعمیر، همانطور که در فصل چهارم آمده (به زودی این فصل نیز در اختیار دوستان قرار خواهد گرفت - مترجم) است ، قبل اجرا مد نظر قرار گیرد.

1. آب اضافه در مخلوط بتن

استفاده از آب بیش از حد در مخلوط های بتن شایع ترین علت آسیب به بتن است. آب بیش از حد مقاومت بتن را کاهش می دهد ، مدت زمان کیورینگ و انقباض خشک را افزایش داده ، موجب افزایش تخلخل وخزش شده و مقاومت بتن در برابر سایش را کاهش می دهد.

شکل 1 اثرات تجمعی آب به سیمان نسبت به دوام بتن را نشان می دهد. در این شکل، دوام بالای بتن با رنج پایین نسبت آب به سیمان وهوای مصرفی متناسب است. خسارت ناشی از آب اضافی می تواند به سختی قابل تشخیص باشد زیرا که معمولا این آسیب بوسیله خرابی های علت های دیگر پوشانده شده است. به عنوان مثال، ترک خوردگی ناشی از انجماد و ذوب ، رشد فرسودگی در اثر سایش، یا ترکهای جمع شدگی ناشی از خشک شدن، اغلب به عنوان آسیبهای بتن شناخته می شوند ، اما در واقعیت، آب اضافی باعث پایین آمدن دوام بتن شده که این خود به علل دیگر اجازه ی حمله به بتن را خواهد داد. در طول آزمایشات پتروگرافی، گاهی اوقات می توان موارد شدید وجود آب اضافی دربتن سخت شده را از طریق حفرات مویینه آب یا حفره های آب در زیر سنگدانه های بزرگ شناسایی کرد. معمولا، بررسی گزارشات بچینگ ، سوابق طرح اختلاط و بازرسی های میدانی استفاده از بیش از حد از آب را در بتن آسیب دیده تایید می کنند. البته باید در نظر داشت، به هر حال ، آب اضافه شده به بتن در تراک میکسر در هنگام حمل به محل پروژه و یا به خود بتن طول عملیات بتن ریزی، غالبا مکتوب نشده و مستند نمی گردد.

تنها تعمیر دائمی بتن آسیب دیده به علت آب اضافی حذف و جایگزینی بتن است.با این حال، با توجه به میزان و ماهیت خسارت، تعدادی از روش های نگهداری و یا تعمیر می تواند درافزایش عمر سازه بتنی مفید باشد. اگر آسیب با تشخیص زودرس همراه بوده و عمق آسیب کم ( کمتر از 5/1 اینچ) است، استفاده از ترکیبات آب بندی بتن، مانند مواد جامد غلظت بالا( بیشتر از 15 درصد) الیگومریک alkyl alkoxy سیلوکسان یا سیستم های سیلان و یا سیستم مونومر methacrylic با وزن مولکولی بالا نفوذ آب را کاهش داده و مقاومت بتن در برابر چرخه ی انجماد و ذوب را بهبود بخشیده و تخریب بتن را کاهش می دهد.

چنین سیستمی تعمیراتی نیازمند به برنامه بازبینی و تعمیر در فواصل زمانی 5 تا10 ساله است. بتن ریزی با چسب اپوکسی برای پیوند بتن قدیم به جدید برای تعمیر خسارت هایی که گستردگی آنها بین 5/1 تا 6 اینچ به داخل بتن تخمین زده می شود، و جایگزینن کردن بتن برای تعمیر آسیب هایی با عمق 6 اینچ یا بیشتر توصیه می شود.

2 – طراحی نادرست

عیوب در طراحی می تواند انواع بیشماری از آسیبهای بتن را ایجاد کند که بحث در مورد همه انواع آن فراتر از حوصله ی این کتاب است

با این حال، یک از اشکالات طراحی که بتازگی تا حد زیادی رایج شده است ، قرار گرفتن قطعات فلزی EM-bedded - جاسازی شده – مانند خط لوله برق یا جعبه تقسیم در نزدیکی سطوح بیرونی سازه های بتنی است. ترک در بتن و در اطراف چنین محلهایی تشکیل شده و اجازه می دهد سرعت تخریب و فرایند انجماد و ذوب سریعتر رخ می دهد. بیس های فلزی راه آهن ها و گارد ریل ها که بیش از حد در نزدیکی لبه ی بیرونی دیوارهای قرار داده شده اند ، پیاده رو ها و نرده های جان پناه نیز نتایج مشابهی را رقم می زنند.

این قطعات فلزی و گسترش نفوذپذیری درون بتن با تغییرات دما متناسب است. با انبساط فلز تنش کششی در بتن ایجاد شده، و در نتیجه باعث ایجاد ترک خوردگی و پس از آن سبب آسیب ذوب و انجماد می گردد.طول گارد ریلها یا نرده های جانپناه می تواند مشکل دیگری ایجاد کند.لوله های مورد استفاده در آنها نیز دچار انبساط وانقباض طولی در اثر تغییرات دما شده واگر مفاصل لغزش کافی تعبیه نشده باشد،این انبساط و انقباض عامل ترک خوردگی در نقاط اتصال بیس ها به بتن می گردد.این ترک ها نیزسرعت آسیب های ناشی از انجماد و ذوب در بتن را افزایش می دهد.

پوشش و کاور ناکافی بتن بر روی شبکه آرماتور یک علت شایع آسیب به سازه های پل و بزرگراه است.این مشکل در سازه های آبی و آبیاری هم وجود دارد .برای احیا و تعمیر معمولا نیاز به حداقل 5/7سانتیمتر پوشش بتن بر روی شبکه آرماتور سازه هست، اما در محیط های خورنده که بتن در معرض اثرات مخرب سولفات ها، اسیدها، یا کلریدها قرار دارد این میزان باید حداقل10 سانتیمتر باشد.

پوشش ناکافی اجازه می دهد تا خوردگی در آرماتورها آغاز گردد، ایجاد اکسید آهن و محصولات جانبی ناشی از این خوردگی نیاز به فضای بیشتر در بتن داشته و در نتیجه ترک خوردگی و متورق شدن بتن را باعث می گردند.

عدم استفاده از مفاصل انقباضی کافی و یا عدم رعایت فواصل درزهای انبساطی به منظورتوزیع یکنواخت دما در اسلب بتنی به آن آسیب میزند و بتن با مفاصل انقباض ناکافی ترک خواهد خورد و این ترک ها در نقاطی که نیاز به درز انبساط بوده اما تعبیه نشده مشهود است.متاسفانه، دیدن چنین ترکهایی به عنوان درز انقطاع های شکل گرفته یا بریده شده چندان جذاب نیست اما ساختار این ترک ها تنش های کششی را کنترل می کند و علی رغم ظاهرهرچند ناخوشایند شان، به ندرت نیاز به تعمیردارند. اسلب بتنی ساخته شده با درزهای انبساطی ناکافی و یا خیلی تنگ می تواند باعث آسیب های جدی به عرشه پل، جاده سد، و طبقات بلند، سطوح شیب دار، سرریز های سد گردد.هر کدام از این بتن ها چرخه طولانی تغیرات روزانه، فصلی و سالیانه دما در اثر تابش های خورشیدی را تجربه می کنند. در نتیجه انبساط بتن در سطوح فوقانی اسلب ها که دمای بالا تری دارند، بیشتر و در بخش ها و لبه های تحتانی که خنک تر هستند کمتر است.چنین انبساطی می تواند موجب لب به لب و مماس شدن بخش های فوقانی دال ها در محل درز های انقطاع شده که در این شرایط تنها راه ممکن برای حرکت آسان اسلب ها به سمت بالاست که باعث ایجاد تورق در فرم بتن می گردد، که از محل درزها آغاز شده و از1 تا 2 اینچ پشت دال ها پیشروی می کنند. این تورق ها به طور معمول در شبکه فوقانی آرموتور بندی واقع شده اند. در اقلیم های معتدل، تورق بتن در دو سوی درزهای انبساطی باقی مانده و آسیب بیشتر وارد نمی شود. در آب و هوای سرد، به هر حال، آب می تواند چرخه روزانه ای از انجماد و ذوب را وارد درزهای ناشی از تورق کند. این باعث می شود که ورقه ورقه شدن بتن رشد کرده و از 3 تا 5 فوت دورتر از محل درز گسترش یابد.

شکل 2 نمونه ای اغراق شده از این آسیب است.

مرمت و بازسازی آسیب های ناشی از طراحی معیوب تا زمانی که اشکالات طراحی کاهش یابد، بیهوده است.قطعات فلزی جاسازی شده می تواند برداشته شود، نرده ها را می توان به مفاصل لغزشی مناسب مجهز نمود، و بیس پلیت های گارد ریل را می توان به محل هایی که بتن در آنجا مقاومت کافی در برابر نیروهای کششی را دارد جابجا کرد.جبران کمی کاور بتن روی شبکه آرماتور بندی بسیار دشوار است، اما می توان مواد مناسبی برای تعمیر و مقاومت در برابر انواع خاصی از خوردگی را انتخاب نمود. همینطورعملیات تعمیرمی تواند با استفاده از مواد آب بندی بتن محافظت شده وبا استفاده از پوشش های آب بند از نفوذ آب به بتن جلوگیری نمود و آنرا کاهش داد.

دال هایی با تعداد کم درزهای انبساطی را نیز می توان با استفاده از کاتر برش داد و به تعداد درز های انبساطی افزود و یا با افزایش عرض درز ، آنرا برای مقابله با اثرات انبساط گرمایی آماده نمود.

آسیب ناشی از اشکالات طراحی به احتمال زیاد می تواند با استفاده از جایگزینی بتن ، جایگزینی بتن با استفاده از چسب اپوکسی، و یا ترکیبی از چسب و ملات های تعمیری اپوکسی مرتفع شود.

3- نقایص ساخت

آسیب های معمول وارد بر بتن در اثر اجرای نادرست مشتمل بر کرمو و متخخل شدن بتن، در رفتن قالب ، اشتباهات محاسباتی و اندازه گیری و نقایص تکمیل کار است.

کرمو شدن و تخلخل بتن در واقع مناطقی هستند که بر اثر ناتوانی ملات سیمان در پر کردن فضاهای موجود اطراف سنگدانه ها و در نتیجه خالی ماندن آنها ایجاد می گردند. در صورت خفیف بودن این نقیصه به شرط اینکه از باز کردن قالبها بیش از 24 ساعت نگذشته باشد می توان از ملات سیمان استفاده نمود.اگر عملیات ترمیم بیش از 24 ساعت بعد از برداشتن قالب و با تاخیرصورت گرفته، یا سطح کرمو شده ی بتن گسترده است، باید ابتدا بتن های معیوب برداشته شده ، سپس با استفاده از ملات ترمیمی آماده ، به همراه چسب پیوند دهنده اپوکسی ، تعمیر صورت گیرد ، روش نهایی نیز جایگزینی کل بتن با بتن جدید است بعضی از نقص های جزئی ناشی از حرکت قالب یا در رفتن قالب را می توان با استفاده از سنگ ساب صاف و پرداخت نمود.در اکثر موارد این رفع نقص به سادگی توسط مالک پذیرفته شده ، والا مجری موظف است نسبت به تخریب و جایگزینی آن بخش آسیب دیده از بتن اقدام کند.

فرصت های زیادی برای ایجاد خطاهای ابعادی در ساخت و ساز بتن وجود دارد.اگربتوان ، بهترین روش معمولا پذیرفتن نقص به جای تلاش برای تعمیر آن است.در غیر این صورت اگر طبیعت نقص کیفی بتن به گونه ای باشد که نتوان آن راپذیرفت ، بهترین تصمیم، تخریب و باز سازی مجدد است. در بعضی موارد، خطاهای ابعادی را می توان با تخریب بتن معیوب و جایگزینی آن با بتن جدید با استفاده از چسب اپوکسی اصلاح کرد.

نقایص تکمیلی معمولا شامل پرداخت بیش از حد(سطح نهایی) و یا اضافه کردن آب و (یا) سیمان به سطح در طی مراحل اتمام کار است.در هر دو مورد، سطح متخلخل و نفوذ پذیر ودر نتیجه کم دوام می شود.سطوح ضعیف نهایی در همان اوائل عمر سازه ترک خورده و خرد می شوند.مرمت و بازسازی سطح خرد شده شامل حذف بتن ضعیف و جایگزینی آن با بتن جدید با استفاده از چسب پیوندی اپوکسی است است.اگر روند تخریب به سرعت تشخیص داده شود، می توان عمر (بتن نهایی) سطح را با استفاده از ترکیبات آب بند کننده بتن افزایش داد.

4-تخریب سولفاتی

سولفات سدیم، منیزیم و کلسیم، از جمله نمکهایی هستند که معمولا در خاکهای قلیایی و زیرزمینی غرب ایالات متحده ( در ایران مناطق ساحلی جنوب و همچنین غرب کشور یافت می شوند(.این گروه از سولفات ها با آهک هیدراته و هیدرات آلومینات موجود در خمیر سیمان واکنش شیمیایی داده و تشکیل سولفات کلسیم و کلسیم سولفات آلومینات می دهند .حجم محصولات جانبی این واکنش بیشتر از حجم خمیر سیمان تولید شده است، بنابراین امکان شکستن بتن در اثر انبساط وجود دارد . سیمان پرتلند نوع 5، که درصد آلومینات کلسیم پایینی دارد، در برابر واکنش شیمیایی و حمله سولفات ها بسیار مقاوم است . بنابراین در جاهایی که سازه بتنی در مجاورت خاک و یا آبهای زیر زمینی دارای سولفات قرار دارد باید از این نوع سیمان استفاده کرد.

نگاه کنید به جدول 2 از کتابچه راهنمای بتن (نوشته شده: دایره اصلاح، 1975) بخش راهنمای مواد و ویژگی های طرح اختلاط برای بتن های محیط های سولفاتی .

گاهی اوقات استفاده از یک پوشش نازک بتن پلیمری می تواند برای بتنی که دستخوش فرسایش و آسیب مدام به علت قرار گرفتن در معرض سولفاتها ست ، مفید باشد و یا استفاده از مواد و ترکیبات آب بندی بتن اثر بخش است است.تناوب پیاپی خشک و تر شدن سازه به تخریب سولفاتی سرعت می بخشد ،لذا کاهش و کم کردن نرخ تخریب را می توان با قطع این چرخه انجام داد.روش پیشنهادی دیگر از بین بردن سولفات های قابل انتقال از راه آب است در صورتی که دسترسی به منبع سولفاتی امکان پذیر باشد. در غیر این صورت پس از انجام بازبینی مناسب باید بتن موجود تخریب شده و با بتن ساخته شده با سیمان تیپ 5 جایگزین شود.

5 – واکنش قلیایی سنگدانه ها

انواع خاصی از شن و ماسه، مانند سنگ اوپال، چرت (نوعی سنگ آتشزنه با ذرات متراکم و سیاه )، سنگ چخماق یا آذرین با محتوای سیلیسی بالا، با کلسیم، سدیم ، پتاسیم و هیدروکسیدهای قلیایی سیمان پرتلند واکنش می دهند.این واکنش، علی رغم بیش از نیم قرن مطالعه و تحقیق اداره اصلاح از سال 1942 چندان درک و شناخته نشده است.برخی بتن های دارای سنگدانه هایی با قابلیت واکنش پذیری قلیایی، به سرعت شواهدی دال بر گسترش تخریب و فرسایش را نشان می دهد.اما بتنهای دیگرممکن است برای سالهای زیادی دست نخورده باقی بمانند.بررسی پتروگرافی در بتن های واکنش پذیر نشان می دهد که نوعی ژل در اطراف این نوع سنگدانه ها تشکیل شده است.

این ژل در حضور آب یا بخار آب (رطوبت نسبی 80 تا 85) ،به شدت گسترش پیدا کرده و ترک های کشیده ای در اطراف سنگدانه ها ایجاد کرده و در بتن گسترش می یابد (شکل 3).

و در صورتی که مهار نشود ، این گسترش در داخل بتن برای اولین بار به صورت ترک خوردگی های منظمی بر روی سطح آشکار می گردد.معمولا، در برخی از موارد تراوش سفید رنگی در داخل و اطراف بتن ترک خورده مشاهده می شود.در موارد شدید، این ترک ها 5/1 تا 2 اینچ (شکل 4) باز می گردند.

بسیار معمول است که چنین آسیب های گسترده ای، منجر به چین خوردگی های(جابجایی های) قابل توجهی در بتن ویا قیود ونقاط اتصال بتنی دروازه های کنترل سدها گردد.در سازه های بتنی بزرگ، واکنش قلیایی سنگدانه ممکن است فقط در مناطق خاصی از سازه رخ می دهد.تا زمانی که استفاده از چندین معدن و دپوی سنگدانه برای استفاده در ساخت سازه های بتنی بزرگ معمول بوده ومورد تایید قرار می گیرد، این روش ممکن است برای تشخیص گیج کننده باشد.زیرا بتن حاوی شن و ماسه قلیایی یا سنگدانه واکنش پذیر، تنها در بخشهایی از سازه که نمایان ساخته شده است ، قابل تشخیص می باشد .همچین وضعیتی در حال حاضر در سد (Minidoka) استارک و DePuy 1995، سد کوه استوارت ، سد کولیج، سد Friant، و سد Seminoe قابل مشاهده است.

در سازه های جدید استفاده از سیمانهای پرتلند با خاصیت قلیایی پایین و سرباره پزولانی میتواند بطور کامل یا تا حد بسیار زیادی خوردگی در اثر واکنش سنگدانه ها را متوقف کند. در سازه های موجود خوردگی ناشی از مصالح سنگی واکنش پذیر تقریبا غیر قابل تعمیر است. هیچ روش اثبات شده ای برای حذف اثر واکنش های قلیایی سنگدانه ها وجود ندارد. اگرچه نرخ گسترش تخریب با اتخاذ تدابیری جهت خشک نگه داشتن سازه در بعضی موارد ممکن است کند شود. اما هر گونه تلاش برای تعمیر سازه هایی که تحت تاثیر واکنش های قلیایی هستند بی ثمر است.با گسترش مداوم این عارضه در داخل بتن هر گونه مواد تعمیری به سادگی جدا شده و بی اثر می شوند.سازه های تحت تخریب فعال باید به صورت مدام مونیتور شده و مورد بازرسی قرار گیرد، و تنها لازم است تعمیراتی را انجام داد که در جهت حفظ بهره برداری مطمئن سازه باشد.اتصالات بتنی گیت های در سد های متعددی با استفاده از سیم بکسل جهت ایجاد برش های ترمیمی در هر سطح بتنی آنها ، به چرخه بهره یرداری بازگردانده شده اند. سپس این برش ها با استفاده از تکنیک تزریق رزین پلی اورتان به جهت آبند کردن و متوقف ساختن نشت آب پر می شود.

با افزایش انبساط بتن، چنین برشهای آزادی منتاوبا تکرار شود.در بسیاری از سازه ها، جابجایی ها و انبساط ها کند شده و از بین می روند و میزان این کندی و توقف بسته به واکنش های قلیایی سنگدانه ها و ترکیبات قلیایی موجود در بتن است . فقط هنگامی می توان اصلاح و ترمیم را برای بهربرداری کامل انجام داد که انبساط سازه به صورت کامل انجام پذیرفته باشد.در هر صورت، باید این پیش بینی را داشت که در نهایت ممکن است نیاز به جایگزینی بتن تحت تاثیر خوردگی قلیایی وجود داشته باشد .چنین مورد جایگزین کردن بتن در سال 1975 در آمریکا ،در جریان بازسازی سد آیداهو فالز اتفاق افتاد.این سد در سال 1927 ساخته شد و پس از مطالعات گسترده توسط آزمایشگاه بتن دنور مشخص گردید که بتن سد در اثر واکنش قلیایی سنگدانه ها به شدت آسیب دیده است.

6 – تخریب ناشی از سیکل انجماد و ذوب

تخریب ناشی از یخ زدکی و ذوب مداوم آب درون بتن یکی از علت های شایع آسیب پذیری سازه های بتنی در اقلیم های سرد سیری است.شرایط زیر در رخ دادن صدمات ناشی از انجماد و ذوب موثر هستند :

1- سازه تحت تاثیر مداوم سیکل ذوب و انجماد باشد.

2- خلل و فرج بتن موجود در هنگام یخ زدگی از آب اشباع – بیش از 90 درصد- شده باشد.

آب در مدت زمان انجماد حدود 15 درصد انجماد حجمی را تجربه می کند .اگر خلل و فرج و حفرات مویینه در بتن تقریبا در طول انجماد اشباع شده باشند ،این انبساط سبب اعمال نیروهای کششی شده و منجر به شکستگی و ترک خوردگی ماتریس ملات سیمان می گردد.این تخریب تقریبا در تمامی لایه های بتن از سطوح خارجی به داخل رخ می دهد.

نرخ پیشرفت آسیب به تعداد چرخه های انجماد و ذوب ، درجه اشباع سازه در طول انجماد، تخلخل بتن، و شرایط قرار گرفتن در معرض تابش نور بستگی دارد.دیوارهایی که در معرض ذوب برف یا پاشش آب هستند ، دالهای افقی که در تماس با آب قراردارند و دیواره های عمودی که در مسیر عبور آب واقع هستند از جمله مکان های معمول برای آسیب در اثرانجماد و ذوب مداوم می باشند.اگر بتن در معرض تابش نور از سمت جنوب قرار گیرد ، روزانه یک نیم سیکل انجماد در شب و یک نیم سیکل ذوب را در روز تجربه می کند در مقابل، بتن ها با در معرض قرار گرفتن از سمت شمال ممکن است فقط یک چرخه انجماد و ذوب را درهر زمستان را پشت سر گذارده و در نتیجه وضعیت به مراتب کمتر مخربی را تجربه می کنند. شکل های 5 و 6 نمونه ای از این نوع تخریب را نشان می دهد.

شق دیگری از تخریب های ناشی از چرخه انجماد و ذوب به عنوان ترک "”D - D-cracking- (ترکهای دی شکل) شناخته شده است.در این مورد، گسترش تخریب در اثر کیفیت پایین ، جذب پذیری بالا ،و استفاده از سنگدانه های درشت درملات سیمان رخ می دهد .این نوع ترک خوردگی اغلب در گوشه ها و کنج هایی بدون حفاظ دیوارها یا دالها و در محل اتصال ها دیده می شود. در چنین آسیبی مجموعه ای از ترک های تقریبا موازی که کلسیت (آهک) از درونشان بیرون میریزد (شوره می زند) معمولا سراسر گوشه و کنار سازه را قطع می کند. (شکل 7).

در سال 1942، دایره اصلاح ((Bureau of Reclamation صراحتا استفاده از مواد افزودنی هوا زا (AEA) در بتن ، به منظور کاهش تخریب سیکل ذوب و انجماد را آغاز نمود . سازه های بتنی ساخته شده قبل از این تاریخ فاقد هوازا بودند .سد Angostura، که در سال 1946عملیات ساخت آن آغاز گردید، اولین سد اصلاح شده با مشخصات مورد نیاز هوازا بر اساس قیمت سال 1981بود.

این نوع افزودنی ، تولید حباب های کوچکی از هوا درون جسم بتن نموده که فضای کافی جهت انبساط آب در هنگام یخ زدگی را فراهم می سازد.اگر هوازای مناسبی با غلظت صحیح درون بتن تازه ی با کیفیتی، بخوبی میکس و مخلوط شود، حاصل کار می بایستی صدمات بسیار کمی را در اثر سیکل ذوب و انجماد متحمل گردد، بجز در اقلیم هایی با آب و هوای بسیار بد.در نتیجه اگر در یک بتن جدید ، چرخه ذوب و انجماد به عنوان عامل آسیب مورد سوظن باشد ، ابتدا باید در این موضوع مورد بررسی قرار گیرد که چرا افزودنی هوا زا اثر بخش نبوده است.

بجز مواردی که بتن در معرض رطوبت و یا آب و هوای به شدت سرد قرار داشته باشد هنگامی که بتن تازه آسیب هایی از نوع چرخه ذوب و انجماد را ظاهر می سازد، به احتمال قوی دلایل دیگری وجود دارد .

(همانطور که گفته شد) تخریب ناشی از چرخه انجماد و ذوب بتن تنها زمانی رخ می دهد که بتن تقریبا اشباع شده باشد.بنابرین کاهش موفقیت آمیز صدمات ناشی از آن نیز،شامل کاهش یا حذف چرخه انجماد و ذوب و یا کاهش جذب آب توسط جسم بتن خواهد بود.معمولا هیچ روش شناخته شده ای برای محافظت و عایق بندی بتن برای کنترل دما جهت سیکل های انجماد و ذوب وجود ندارد ، اما می توان از ترکیبات آب بندی بتن برای جلوگیری یا کاهش جذب آب برای سطوح نمایان بتنی استفاده نمود.مواد آب بند برای بتن های غوطه ور در آب چندان اثر بخش نیست، اما می تواند از بتن هایی که در معرض باد و باران و آب شدن برف قرار دارند، محافظت نمایند.

ترمیم بتن آسیب دیده در اثر ذوب و یخ مدام ، اغلب به جایگزینی بتن ختم می شود. اگر ترک ها در حدود 6 اینچ و یا عمیقتر باشند باید از چسب اپوکسی به همراه بتن جدید استفاده کرد و یا از بتن پلیمری استفاده نمود . اگر صدمات بین 5/1 تا 6 اینچ عمق داشته باشد، حتما و مطمئنا در بتن جایگزین باید از مواد هوازا استفاده نمود. تلاش ها برای ترمیم خوردگی ها و تخریب های سطحی در اثر یخ زدگی و ذوب شدن متناوب، با عمق کمتر از 5/1 اینچ کاملا مایوس کننده بوده است. تا به امروز هیچ ماده تعمیری عمومی یا اختصاصی از سوی آزمایشگاه بتن دنور (ایالات متحده) ، مناسب ترمیم با این ضخامت شناخته نشده است.

7- تخریب در اثر سایش و فرسایش

سازه های بتنی که آب را به همراه گل و لای و ذرات معلق منتقل می کنند، شن ، خورده سنگ و یا آب با سرعت جریان بالا موضوعات مورد مطالعه در تخریب بتن در اثر سایش می باشند. حوضچه های آرامش در سد ها در صورتی که ذرات موجود در کف آنها جارو و منتقل نشود در معرض سایش قرار خواهند گرفت. در برخی از حوضچه های آرامش به علت معیوب بودن الگوی جریان ، سنگریزه ها و ذرات از پایین دست به بالا دست حوضچه کشیده می شود.در محلهایی که این ذرات درون حوضچه جمع میشوند ، در زمانی که جریانهای شدید وجود دارد، تخریب های قابل توجهی بوجود می آید.(شکل 8).

این سایش در اثر کوبش شن و خورده سنگ ها و گل و لای به کف اتفاق می افتد. آسیب ناشی از این تخریب به صورت صیقلی شدن سطح بتن ظاهر می شود. (شکل 9).

سنگدانه های درشت بتن نمایان شده و قدری از آنها تحت اثر گل و لای و شن، جلا خورده اند. شکل 10 مراحل اولیه سایش و احتمالا شروع خوردگی در دیوارهای حوضچه آرامش را نشان می دهد.

میزان تخریب سایش و خوردگی تابعی از متغیرهای زیاد و همچنین مدت زمان قرار گرفتن (سازه) در معرض این مولفه هاست، شکل سطوح بتنی، سرعت و الگوی جریان، مسیر جریان، و مجموع بارگذاری امکان دستیابی به نظریه ای عمومی برای پیش بینی رفتار بتن در این شرایط را بسیار دشوار ساخته است. در نتیجه، معمولا لازم است مدل هیدرولیکی سازه برای تشخیص شرایط و الگوی جریان در حوضچه های آسیب دیده و ارزیابی تغییرات مورد نیاز مورد مطالعه قرار گیرد.اگر تمامی شرایطی که منجر به سایش و فرسایش سازه میگردد مورد بررسی قرار نگیرد، بهترین مواد تعمیری هم کارایی نداشته و عمر بهره وری سازه پایین خواهد آمد.

به طور کلی این درک وجود دارد که بتن با کیفیت بالا به مراتب مقاوم تر از بتن با کیفیت پایین در مقابله با آسیب ناشی از سایش است . تعدادی از مطالعات انجام شده ( Smoak)، 1991 به وضوح نشان می دهد که مقاومت بتن در برابر سائیدگی با افزایش مقاومت فشاری بتن را افزایش می یابد.

بهترین ترمیم آسیب های ناشی از سایش استفاده از بتن با دوده سیلیسی و یا استفاده از بتن پلیمری است.این مواد بالاترین مقاومت در برابر تخریب را در تست های آزمایشگاهی و میدانی نشان داده اند. اگر تخریب تا پشت شبکه آرماتور بندی نفوذ نکرده و حداقل 6 اینچ در جسم بتن نفوذ کرده باشد، باید بتن جدید میکس شده با پودر میکروسیلیس روی یک لایه چسب اپوکسی تازه اجرا شود. شکل 11 نحوه ی اجرای بتن با پودر میکروسیلیس جهت ترمیم خرابی های ناشی از سایش، فرسایش و چرخه ی انجماد و ذوب را بر روی کف سرریز سد Vallecito نشان می دهد.

- آسیب های ناشی از پدیده کاویتاسیون

تخریب در اثر کاویتاسیون زمانی اتفاق می افتد که جریان آب با سرعت بالا به صورت نامنظم و ناپیوسته به سطح جریان برخورد کند. ناپیوستگی در مسیر جریان باعث می شود آب سطح جریان را بالا بکشد ، در نتیجه باعث ایجاد مناطق فشار منفی شده و حباب هایی از بخار آب ایجاد گردد. این حباب ها به پایین دست جریان حرکت کرده و می ترکند. اگر ترکیدگی حباب ها مجاور یک سطح بتنی صورت بگیرد، یک ناحیه ی ضربه ای فشار بالا گرداگرد یک منطقه بی نهایت کوچک در روی سطح ایجاد می شود. چنین ضربات قدرتمندی می تواند ذرات بتن را جابجا و قلوه کن کرده ، باعث تشکیل ناپیوستگی دیگری شود که خود آن می تواند باعث آسیب گسترده تری در اثر پدیده کاویتاسیون گردد. شکل 12، الگوی کلاسیک "درخت کریسمس" –تخریب در اثر کاویتاسیون به شکل کاج کریسمس- در یک تونل انتقال بتنی بزرگ در سد گلن کانیون که از سال 1982 جریانی بوده ،رخ داده است ،را نشان می دهد.

در این نمونه، تخریب کاویتاسیون به طور کامل در طول تونل بتن گسترش یافته و حدود 40 فوت به اساس صخره (شکل 13) نیز نفوذ کرده است.

تخریب در اثر کاویتاسیون در درون ، اطراف و چهارچوبه در های کنترل آب معمول است.جریان سرعت بسیار بالا هنگامی رخ می دهد که گیت های کنترل آب برای اولین بار باز می شوند ویا به مقدار کوچکی باز می مانند.این جریان باعث تخریب از نوع کاویتاسیون در پایین دست گیت ها یا اطراف آن می گردد.

برای ایجاد مقاومت در برابر پدیده کاویتاسیون بسیاری از مواد مختلفی توسط آزمایشگاه های اصلاح و ترمیم، رسته ی مهندسی ارتش ایالات متحده، و دیگران تست شده است. تا به امروز، هیچ ماده ای، از جمله فولاد ضد زنگ و چدن، قادر به تحمل کامل اثر های تخریبی ایجاده شده توسط کاویتاسیون نیست.برای داشتن تعمیرات موفق باید علل ایجاد کاویتاسیون را در نظر گرفت.

قانون استاندارد انگشت شست (rule of thumb) بیان می کند که کاویتاسیون در جریان هایی با سرعت کمتر از حدود 40 فوت در ثانیه در فشار محیط رخ نمی دهد. در باره ی سرعت جریانهایی تا به این اندازه نزدیک به آستانه (40 فوت بر ثانیه)، لازم است اطمینان حاصل شود که هیچ ناهمواری و یا ناپیوستگی در سطوح مسیر جریان وجود ندارد.

جزئیات و مشخصات ترمیم نهایی بر روی سطح سازه های بتنی که جریان هایی با سرعت بالا را تجربه خواهند کرد، باید بسیار سفت وسخت وبدون اغماض صورت پذیرند.

تعمیرات بتن تازه توانایی پاسخگویی به این نیاز شرایط سازه را نداشته باشد گاهی اوقات می تواند به صورت سنگ زنی وساب زنی سطح و برداشتن ناهمواری ها انجام می شود.هرچند، به احتمال زیاد بتنی است که مشخصات سطحی مورد نظر را برآورده نمی کند باید برداشته شود و با بتن جدید جایگزین شود و یا بتن جایگزین بتن به همراه چسب اپوکسی استفاده می شود.

خسارت وارد شده در اثر کاویتاسیون به چهارچوب یا خود گیت های کنترل معمولا می تواند با استفاده از ملات اپوکسی و چسب پیوندی اپوکسی ، ویا بتن پلیمری ، و یا جایگزینی بتن به همراه چسب اپوکسی تعمیر شود.طبیعت چنین آسیب هایی معمولا بسیار گسترده نیست.در نتیجه کشف و شناسایی آنها قبل از انجام تعمیرات بزرگ بسیار ضروری است.پس از انجام این تعمیرات، ایده خوبی است که یک لایه پوشش یکپارچه اپوکسی روی بتن ، از ابتدای چهارچوب گیت به سمت پایین دست به طول 5 تا 10 فوت اعمال کرد ،.سطح صیقل و شیشه ای پوشش اپوکسی ممکن است به جلوگیری از اثرات مخرب کاویتاسیون بر بتن کمک کنداما .به هر حال باید توجه داشت، که پوشش های اپوکسی به طور کامل در برابر آسیب های ناشی از کاویتاسیون مقاوم نیست.

برای داشتن یک تعمیر موفقیت آمیز در سرریزها، دریچه های خروجی ، یا حوضه های آرامش بتنی در سد ها تقریبا همیشه نیاز به ایجاد تغییرات عمده در ساختاربخش آسیب دیده به منظورجلوگیری از بازگشت تخریب وجود دارد.نتایج و عملکرد روش ها در مطالعات مدل هیدرولیک برای اطمینان از صحت طراحی چنین تعمیراتی باید در نظر گرفته شوند.یکی از روش های اصلاحی، نصب و راه اندازی شیار های (slot) هوا در سر ریز ها و تونل هاست، که در از بین بردن و یا کاهش قابل توجه اثر کاویتاسیون بسیار موفق بوده است.بتن جایگزین معمولا در این نوع عارضه ها و تعمیرات اینچنینی کاربرد بسیار دارد.

9- خوردگی شبکه آرماتور

خوردگی شبکه آرماتور معمولا نشانه ی بر تخریب بتن به علت دیگریست، در این مورد، علل مخرب دیگر بتن را ضعیف کرده و اجازه می دهند تا خوردگی شبکه آرماتور رخ بدهد.به هر صورت ، شبکه های آرماتور دارای خوردگی به صورت متداول در هر بتن آسیب دیده ای یافت می شوند لذا با توجه به اهداف این کتاب بنا داریم در این مبحث ،علل خوردگی آرماتور ها را مورد مطالعه قرار دهیم.

ظرفیت قلیایی سیمان پرتلند مورد استفاده در بتن به طور معمول در اطراف آرماتورها ، ایجاد یک محیط بازی (قلیایی) غیر فعال (در حدود PH12 ) کرده که از آنها در برابر خوردگی محافظت می کند. وقتی که انفعال محیطی از دست رفته و یا از بین برود، و یا زمانی که بتن دچارترک خوردگی شود و یا تورق به اندازه کافی اجازه می دهد تا آب بدون مزاحمت وارد بتن شود، خوردگی رخ می دهد. اکسیدهای آهن تشکیل شده در طول خوردگی فولاد نیاز به فضای بیشتری نسبت به سایز اصلی شبکه آرماتور در بتن دارند. این مسأله باعث بوجود آمدن تنش کششی در بتن و در نتیجه ایجاد ترک های اضافی و (یا )لایه لایه شدن کاور بتن و در نتیجه سرعت بخشیدن به روند خوردگی خواهد شد.

برخی از علل شایع تر از خوردگی فولاد همراه شدن ترک خوردگی های بتن با سیکل انجماد و ذوب شدن، قرار گرفتن در معرض سولفات، و واکنش قلیایی سنگدانه ها، قرار گرفتن در معرض اسید، از دست دادن خواص قلیایی به علت کربناته، فقدان ضخامت کافی کاور بتن، و قرار گرفتن در معرض کلرید هاست.

قرار گرفتن در معرض کلرید ها تا حد زیادی نرخ خوردگی سرعت بخشیده و می تواند به فرمهای متعددی رخ می دهد.استفاده از نمک ضد یخ(کلرید سدیم) به بتن برای سرعت بخشیدن به روند آب شدن برف و یخ، منبع معمول برای کلریدها است.کلریدها همچنین می توانند در شن و ماسه، سنگدانه ها، و آب مورد استفاده برای آماده سازی مخلوط های بتن وجود داشته باشند.بعضی از سازه های آبیاری در ایالت های غربی آمریکا ، آب با محتویات کلرید بالا را منتقل و جابجا می کنند(شکل 14).

سازه های بتنی واقع در محیطهای دریایی قرار گرفتن در معرض کلراید را از طریق آب دریا و یا پاشش در اثرجریان باد تجربه می کنند.

در نهایت یکی دیگر (از راههای حمله ی کلرها) روش تجربی استفاده از کلراید به عنوان مواد افزودنی بتن برای سرعت بخشیدن به هیدراتاسیون در زمستان (به عنوان ضد یخ) بود.

رخ دادن زنگ زدگی در شبکه آرماتور می تواند معمول باشد ، اما نه همیشه ، این مسئله را می توان با آشکار شدن لکه زنگ بر روی سطوح خارجی بتن و یا تولید صدای توخالی و یا طبل مانند و بمی که ناشی از ضربه زدن نرم روی بتن مشکوک ایجاد می شود ، شناسایی کرد.همچنین می توان با اندازه گیری پتانسیل خوردگی هافسل از بتن آسیب دیده، با استفاده از دستگاه های الکترونیکی ویژه، که به این منظور ساخته شده، زنگ زدگی را شناسایی نمود.زمانی که زنگ زدگی شبکه آرماتور تایید شد، بسیارمهم است که آنچه واقعا باعث خوردگی شده شناسایی شود، چون معمولا علل خوردگی تعیین خواهد کرد که چه روش تعمیراتی را باید مد نظر و مورد استفاده قرار داد.بحث بیشتر درمورد روش های ترمیمی مناسب ،در بخش های دیگری از کتاب آورده شده است.هنگامی که علت آسیب شناسایی شد و مسئله ساده تر گردید ، در صورت لزوم، حفاظت و آماده سازی شبکه آرماتور تحت اثر خوردگی درهنگام برداشتن بتن فرسوده اهمیت می یابد. بر این اساس فلزی که توسط فرآیند خوردگی به کمتر از نصف سطح مقطع اصلی آن کاهش یافته باید حذف شده و جایگزین گردد.فولاد باقی مانده نیز برای حذف تمام شل زنگ ها ، خورده زنگ ها و محصولات جانبی خوردگی که با اتصال به مواد تعمیری (در روند ترمیم) دخالت می کنند ، باید تمیز گردد. شبکه آرماتور بندی تحت خوردگی ممکن است است از مناطق دارای بتن آسیب دیده به سوی بتن به ظاهر خوب گسترش یافته باشد. بنابرین در هنگام برداشتن بتن باید دقت کرد تمامی شبکه آرماتور دارای خوردگی شناسایی شوند.

10- قرار گرفتن در معرض اسید

منابع شایع برای قرار گرفتن سازه های بتنی در معرض اسید در مجاورت معادن زیر زمینی اتفاق می افتد. آب های زهکشی خارج شده از این معادن می تواند اسیدی و به صورت غیر منتظره ای با PHپایین باشد.مقدار PH 7 به عنوان ماده خنثی تعریف شده است. مقادیر بالاتر از 7 قلیایی نامیده شده اند، در حالی که مقادیر PH پایین تر از 7 اسیدی هستند. محلول اسید سولفوریک 15 تا 20 درصد،مقدار PH در حدود 1 می تواند داشته باشد.

چنین محلولی به سرعت به بتن آسیب می زند.پسآبهای اسیدی با مقدار PH بین 5تا 6 نیز به بتن صدمه میزنند، اما تنها پس از قرار گرفتن طولانی سازه در معرض آنها.

تشخیص بتن آسیب دیده توسط اسید بسیار آسان است.اسید با سیمان پرتلندِ ملات بتن واکنش می دهد و سیمان به نمک های کلسیم تبدیل شده که بوسیله آب جاری ریزش کرده و شسته می شوند.سنگدانه ها ی درشت تر معمولا سالم می مانند، اما نمایان می گردند. ظاهر بتن آسیب دیده توسط اسید تا حدودی مانند تخریب سایشی است، اما سنگدانه هایی که در معرض اسید قرار می گیرند نمایانتر و بدون صیقل هستند. شکل 15 و 16 ظاهر نمونه ای از بتن را نشان می دهند که با قرار گرفتن در معرض اسید آسیب دیده است.

تخریب اسیدی به وضوح در سطح آغاز می شود، و تحت تاثیر اسید گسترش می یابد ، از آن طرف هرچه به هسته اصلی سازه و عمق بتن نزدیک می شود میزان تخریب کاهش می یابد. غلظت اسید در سطح بتن بالاست.اما هرچه به داخل بتن نفوذ می کند به علت واکنش با سیمان پرتلند خنثی می گردد. با این حال، سیمان موجود در جسم بتن به علت این واکنش ها ضعیف شده است.

بنابراین اقدامات اولیه برای ترمیم بتن تحت اثر اسید، که شامل برداشتن بتن آسیب دیده است همواره بیش از آن چیزیست که پیش بینی می شود.عدم حذف تمامی بتن های آسیب دیده و ضعیف شده ناشی از عملکرد اسید باعث نقص در چسبیدن مواد ترمیمی می شود.بر اساس تجربه شستشو با اسید به عنوان یک روش مجاز برای تمیز کردن بتن جهت آمادگی سطوح برای تعمیرات مجاز می باشد ، اما به هر صورت، نقص در چسبیدن مواد تعمیری رخ می دهد، مگر آنکه تلاش های گسترده ای برای حذف تمام آثار اسید از بتن انجام پذیرد.

در روش های دیگر ترمیم بتن هیچ مجوزی جهت استفاده از اسید برای آماده سازی سازی بتن قبل از تعمیر و یا برای تمیز کردن ترک ها به منظور تزریق رزین صادر نشده است.

همانند تمامی علل تخریب بتن ، حذف منع تخریب بتن پیش از ترمیم لازم و ضروریست. یکی از روشهای معمول در تخریبات اسیدی، رقیق کردن اسید موجود در محل به وسیله آب است. محلول اسیدی با PH پایین می تواند تبدیل به محلول اسیدی با PH بالاتر شده که پتانسیل رفتار مخرب کمتری دارد.

به عنوان جایگزین اگر PH محلول اسیدی به طور متوسط بالا بود، می توان از سیستم پوشش نازک بتن پلیمری به عنوان متوقف کننده بازتولید اثرات تخریبی اسید پس از انجام ترمیم بر روی سطح استفاده نمود.

تحقیقات آزمایشگاهی نشان می دهد پوشش هایی با قابلیت محافظت سطح بتن در برابر اسید های قوی ، به ندرت اقتصادی هستند.

در تعمیرات تخریب اسیدی می توان از بتن جایگزین به همراه چسب اپوکسی بتن جایگزین و بتن پلیمری و در بعضی موارد از چسب اپوکسی به همراه ملات اپوکسی استفاده نمود. پیشنهاد می شود از ملات اپوکسی و بتن پلیمری که حاوی سیمان پرتلند نباشند، به دلیل مقاومت زیادی که در برابر اسید ، استفاده گردد.

11 – ترک خوردگی

ترک مثل خوردگی آرماتورها دلیل اصلی تخریب بتن نیست. بلکه نشانه ای از تخریب بتن به علت سایر عوامل مخرب است.

همه بتن هایی که با سیمان پرتلند ساخته می شوند درجه ای از جمع شدگی را در هنگام هیدراتاسیون متحمل می شوند. این انقباض جمع شدگی های خشکی را تولید کرده و ترک های ناشی از جمع شدگی را پدید می آورد که تا حدی به الگوی دایره ای شبیه هستند (شکل 17) .

این ترک ها به ندرت به عمق بتن گسترش یافته و می توانند به طور کلی نادیده گرفته می شوند.

ترکهای جمع شدگی پلاستیک، زمانی رخ می دهند که بتن تازه در معرض تبخیر زیاد آب خود را از دست می دهد ، که این در زمانیست که بتن وضعیت خمیری دارد.(شکل 18)

ترک های جمع شدگی پلاستیک معمولا تا حدی عمیق تر از ترکهای خشک و ترکهای ناشی از جمع شدگی در حین کیورینک بتن می باشند.

ترکهای گرمایی در اثر انقباض و انبساط بتن در اثر تغییر دمای محیط بوجود می آیند. ضریب طولی انبساط گرمایی بتن در حدود 5/5 میلیونیم اینچ بر اینچ بر درجه فارنهایت است. این می تواند باعث شود تا بتن به اندازه 5 درصد یک فوت به ازای هر 80 درجه فارنهایت تغییر طولی داشته باشد.

اگر هنگام طراحی به اندازه ی کافی درز برای وفق دادن بتن با این تغیر اندازه در سازه های بتنی تعبیه نشده باشد، بتن به سادگی از محلهایی که لازم بود درز انبساطی لحاظ شود ترک می خورد. این نوع ترک ها عموما بصورت کامل در درون جسم بتن گسترش یافته و منبعی برای نشت آب به درون سازه ی بتنی ایجاد می کنند. ترک های حرارتی همچنین می توانند در اثر دمای بالای هیدراتاسیون سیمان پرتلند در هنگام کیورینگ ایجاد شوند. در چنین بتن هایی مادامی که افزایش حرارت وجود دارد ، دمای داخلی و سختی افزایش می یابد. انقباض ثانویه نیز زمانی رخ می دهد که سازه رو به سرد شدن رفته و در اثر تنش کششی داخلی در سراسر نقاط تکیه گاهی ترک ایجاد می گردد.

کمبود نقاط تکیه گاهی یکی دیگر از علل شایع ترک خوردگی در سازه های بتنی است. تنش کششی بتن معمولا بین 200 تا 300 psi است. پی موجود سازه به راحتی می تواند شرایط جابجایی را هرجا که تنش کششی از این میزان تجاوز کرده به وجود آورد و در نتیجه منجر به ایجاد ترک گردد.

ترک های بتن همانگونه که در بخشهای پیش مورد بحث قرار گرفت ،در اثر واکنش سنگدانه های قلیایی بتن ، حمله سولفاتی و تاثیرات سیکل ذوب و انجماد نیز ایجاد میشوند. این ترک ها در سازه در اثر بارگزاری بیش از حد سازه نیز اتفاق می افتند که در بخش آینده به آن خواهیم پرداخت.

تعمیرات موفق بر روی ترکهای سازه ی بتنی اغلب به سختی حاصل می گردد. گاهی بهتر است به برخی از انواع ترک های بتن نپرداخت تا با روش اشتباه و پر نقص دست به تعمیرشان زد. (شکل 19 و20)

انتخاب روش ترمیمی برای ترک ها به علل پیدایش آنان بستگی دارد. ابتدا باید تعیین کرد که ترکها زنده هستند یا مرده ، به صورت گردشی باز و بسته هستند یا گسترش یابنده با دامنه ی وسیع . تعمیرات سازه ای در این نوع معمولا بسار پیچیده و اغلب بی اثر هستند. چنین ترک هایی به سهولت و به سرعت بر روی مواد تعمیری یا در مجاورت بتن تعمیری باز تولید می شوند. به همین دلیل و پیش از هر تلاشی برای تعمیر بتن لازم است تا " ترک سنجی" به منظور مونیتور و نظارت بر روی ترک های سازه نصب شود. (شکل 21)

این ابزار باید اطلاعاتی در مورد نوع ترک ، باز و بسته شدن دوره ای ، و اینکه سیکل آن روزانه یا فصلی است و اینکه به علت تغییرات دمایی هست یا نیست و یا اینکه ترک از نوع پیشرونده و وسیع شونده است و به علت شرایط فونداسیون و یا بارگزاری است. مجددا اشاره می شود هر تلاشی برای تعمیر تنها هنگامی باید صورت گیرد که علل رفتار ترکها شناسایی شده باشد.

اگر تشخیص داده شد ترک اصطلاحا "مرده" یا به عبارتی ایستا است، تزریق رزین اپوکسی می تواند برای یکپارچه ساختن سازه ای بتن استفاده شود. و اگر هدف از ترمیم ، آب بند ساختن نشتی سازه است پیشنهاد می شود که ترمیم به صورت کامل با تزریق رزین پلی یورتان انجام پذیرد.

تزریق رزین اپوکسی در برخی موارد که حجم نشت آب سازه کم باشد ، برای آب بندی استفاده شده و یا جهت چسباندن مجدد ترک های اعضای سازه ی بتنی بکار می رود.

رزین اپوکسی پس از تزریق به ماده ای سخت اما شکننده و ترد که نسبت به حرکت احتمالی ترک ها مقاومتی ندارد بدل می شود ، در عوض رزین پلی یورتان انعطاف پذیر بوده و مقاومت کششی پایینی داشته و به فومی بدون منفذ بدل شده که برای رفع نشت و آببندی سازه های بتنی اثر بخش است اما نمی توان به صورت نرمال برای تعمیرات اساسی از آن استفاده نمود.( برخی رزین های دو جزئی پلی یورتان وجود دارند که پس از تزریق صلب و انعطاف پذیر شده و برای این گونه تعمیرات مفید خواهد بود).

این گونه فوم های انعطاف پذیر می توانند 300 تا 400 درصد ازدیاد طول در اثر حرکات ترک ها را تجربه کنند. این نامتداول نیست که بتن آسیب دیده ای یافت شود که ترک های آن در اثر علل اولیه آسیب بتن ایجاد نشده باشد.(بخش 13 را ببینید).

اگر عمق برداشت بتن آسیب دیده و فرسوده به اندازه ی مورد لازم زیر عمق و دامنه ی گسترش ترکهای موجود نباشد، باید انتظار داشت سرانجام ترک جدیدی از میان مواد تعمیری استفاده شده نمایان شود.چنین بازتولید ترک ها را می توان در پوشش های ترمیمی پیوندی در عرشه ی پل ها ، سرریز ها و کانال های آب می توان مشاهده کرد ( شکل 22)

اگر ترک های مجدد تحمل ناپذیر باشند باید روش تعمیر جداگانه ای برای هر یک از اجزای سازه و نه بر اساس اتصال به بتن قدیمی موجود در نظر گرفت.

12- بارگذاری بیش از حد بر روی سازه

تخریب بتن در اثر بارگزاری بیش از حد معمولا بسیار واضح است و به سادگی قابل شناسایی ست. رویداد هایی که در اثر بارگزاری بیش از ظرفیت سازه بوجود می آیند قابل توجه و قابل ذکر اند. تنش تولید شده در اثر بارگزاری زیاد به بروز ترک های متمایزی منجر شده که بارگزاری بیش از حد و نقاط باربر را نمایان می کنند. غالبا بارگزاری بیش از حد یکبار اتفاق می افتد و یک بار هم اثرات آن مشخص می شود و لذا در صورت ترمیم می توان انتظار داشت آثار تخریب بتن مجددا بر روی بتن تعمیری عود نکند.

باید انتظار داشت در چنین آسیب هایی به دانش و کمک یک مهندس سازه ی باتجربه، برای انجام تجزیه و تحلیل ساختاری برای مشخص ساختن و ارزیابی علل منجر به تخریب سازه در اثر بارگزاری بیش از ظرفیت بطور کامل ، و نیز کمک برای تعیین میزان ترمیم و تعمیر ات لازم ، نیاز خواهد بود. این آنالیز باید تعیین میزان بارپذیری سازه در هنگام طراحی و تعیین اندازه ظرفیت طراحی شده برای بارگزاری بیش از حد را شامل شود. از ابتدا تا انتهای بازبینی بتن آسیب دیده باید تمامی اثرات بارگزاری بر روی سازه مشخص شود. جابجایی ها باید مشخص شوند و در درجه ی دوم خرابی ها ، در هر جایی که باشند. باید توجه داشت که اطمینان حاصل شود که خرابی هایی شناسایی شوند که ظرفیت بار پذیری سازه را پایین می آورند چون برخی از آسیبها برای اولین بار بتن را تضعیف نمی کند. ترمیم بتن آسیب دیده در اثر بارگزاری زیاد، میتواند به احتمال فراوان، بهترین عملکرد را با بتن جایگزین متداول داشته باشد. در صورت نیاز به تعمیر یا جایگزینی شبکه ی آرماتور بتن آسیب دیده می بایست این عملیات در پروسه تعمیراتی پیش بینی و تعبیه گردد.

13- دلایل مضاعف تخریب

علت آسیب می بایست مشکوک باشد هنگامی که فرسودگی یا خسارتی در «بتن مدرن» رخ می دهد. بتن مدرن ( بتنی که از حوالی سال 1950 میلادی ساخته شده است) این مزیت را دارد که از افزودنی های گوناگون و تکنولوژی پیشرفته مواد بتنی برخوردار است.چنین بتنی نباید به بسیاری از دلایلی که در این فصل بررسی نموده ایم تخریب گردد. اگر به هر طریق مشخصات آسیب یا فرسودگی در این بتن نمایان گشت به احتمال فراوان مجموعه ای از دلایل موجبات آنرا فراهم نموده اند. ضعف در شناخت یا تقلیل دادن علل گوناگون آسیب به طور حتم سبب تعمیر ضعیف و عدم بهره برداری مناسب می گردد. تصویر 23 آسیب بتن در اثر چند عامل مخرب را نشان می دهد.

این بتن از ترکهای ناشی از واکنش قلیایی سنگدانه ها رنج می برد ، همچنین فرسایش ناشی از تسریع فرآیند چرخه ذوب و انجماد در سطح آن رخ داده است. همینطور صدمات ناشی از طراحی نادرست و یا ضعف در تکنیک های ساخت، در محل تعبیه شده برای داکت تاسیسات برقی که بسیار نزدیک به سطح خارجی بتن می باشد، مشهود است.

استفاده مناسب از افزودنی هوازا در بتن مدرن ، در حد بالایی مقاومت بتن در برابر فرسایش ناشی از سیکل ذوب و انجماد را توسعه داده است. بجز در مواردی که بتن در معرض سرمای بسیار شدید غیر معمول قرار می گیرد، نباید نشانه هایی از آسیب مربوط به سیکل ذوب و انجماد بروز یابد. علی رغم این ، سیکل انجماد و ذوب هم چنان یکی از مقصران آسیب به بتن های مدرن می باشد. قبل از اینکه شرایط ذوب و انجماد را متهم کنیم بهتر است این سئوال را مطرح کنیم که چرا افزودنی هوازا محافظت موثری را از بتن فراهم نکرده است؟ طرح اختلاط ویا نتایج تست کیفیت سنگدانه ها ممکن است ضعف بتن آماده شده را آشکار سازد. یا سنگدانه های در دسترس از کیفیت مرغوبی برخوردار نباشند. گزارشات ناظران ساخت و ساز ممکن است مشخص سازد در وهله ساخت تا اتمام آن ضعف در اجرا وجود داشته است.

تست های پتروگرافی بتن ضعیف ممکن است آشکار سازد ، واکنش قلیایی سنگدانه های بتن ، حمله سولفات ها و تاثیر کلروها بتن را در شرایطی قرار داده تا اجازه دهد آسیب های ناشی از چرخه انجماد – ذوب بروز نماید.

تمام این یافته ها آشکار می سازد که مشکل ایجاد شده بسیار پر دامنه تر و وسیعتر از تصور اولیه است و لذا نیازمند عملیات پیشگیرانه و صحیح گسترده تر از یک جایجایی ساده بتن فرسوده فعلی می باشد.

استفاده بیش از حد از آب در اختلاط بتن ، انتخاب نامناسب نوع سیمان پرتلند، عملکرد ضعیف در اجرا، بتن آماده ی ضعیف ، استفاده از سنگدانه های آلوده و کم کیفیت و کیورینگ ناکافی، تماما به بتن دوام پایینی می بخشند. چنین بتنی در برابر فرسایش نرمال و سایر پیشامد ها مقاومت پایینی خواهد داشت.

انتخاب روش و مواد مناسب برای بتن آسیب دیده ای که تحت تاثیر عوامل مختلف تخریب قرار داشته، بستگی به تمامی عوامل تضعیف کننده و تسریع کننده تخریب دارد. هرگاه عامل تضعیف کننده به صورت کامل درک شد، اولین اقدام پیشگیرانه معمول محافظت از بتن اصلی از تخریبات اضافی است. استفاده از ترکیبات بتن آببند یا پوشش نازک بتن پلیمری ممکن است در این باره مفید باشد. اگر این راهکارهای پیشگیرانه در مقام داوری مفید نبود می بایست بر اساس شروحی که در بخش های قبلی آمد روش ترمیم را با در نظر داشتن دوره عمر کوتاه ترمیم و بازگشت مجدد آسیب ها بر بتن ضعیف انتخاب و اجرا نمود.

بر اساس نظر مترجم محترم استفاده و اشتراک گذاری این مطلب با اشاره به نام منبع ( کلینیک بتن ایران )مجاز می باشد.

انواع فونداسیون با توضیحات جامع

فونداسیون ها را نسبت به نوع مصالح و سیستم ساخت آن می توان به دو گروه تقسیم کرد : گروه اول شامل انواع فونداسیون از نظر نوع مصالح آن مانند فونداسیون های سنگی ، آجری ، شفته ای ، بتنی ، گروه دوم شامل انواع فونداسیون از نظر سیستم ساخت آن مثل : : فونداسیون های تکی ، نواری ، صفحه ای ، فونداسیون مشترک و فونداسیون های کلاف شده می باشد .

1. فونداسیون سنگی :
این فونداسیون از سنگ های طبیعی و در مناطقی که سنگ ارزان در دست رس باشد ساخته می شود سنگی که در برای این گونه فونداسیون ها انتخاب می گردد باید سالم ( نپوسیده ) بوده و از انواع سنگ های لاشه شکسته باشد سنگ های قلوهای به علت صیقلی و مدور بودن آن برای بی سازی مناسب نمی باشد زیرا حالت ناپایدار به فونداسیون می دهد . سطح فونداسیون سازی با سنگ باید از دیوار هایی که روی آن قرار دارد وسیع تر و از هر طرف دیوار حداقل 15 سانتیمتر عنوان ریشه گسترش داشته باشد . فونداسیون سازی با سنگ با دو نوع ملات صورت می گیرد . چناچه بار و فشار کم باشد ملات سنگ ها را از نوع گل آهک و چنانچه بار زیاد باشد ملات ماسه سیمان انتخاب می شود و استفاده از ملات ماسه سیمان ، ماسه و آهک و یا ملات باشد و از فونداسیون های سنگی فقط و ساختمانهای یک طبقه . فونداسیون دیوارهای محوطه استفاده می شود .

2.فونداسیون آجری :
از فونداسیون های آجری در مواقعی استفاده می کنند که ساختمان کوچک و باروارده نیز کم باشد در ضمن از فونداسیون های سنگی نیز به علت گرانی و کمیابی سنگ نتوان استفاده کرد این فونداسیون نیز مانند فونداسیون های سنگی بایستی دارای ریشه ای به اندازه 15 تا 20 سانتی متر از طرفین دیوار روی آن باشد برای این منظور است که عرض پی کنی نیز 30 تا 40 سانتی متر از عرض دیوار بیشتر باشد این مقدار اضافه عرض همچنین عمل آجر چینی در داخل پی را آسان تر می نماید چون زاویه پخش بار در فونداسیون عالی آجری در حدود 60 درجه می باشد برای صرفه جویی در مصرف آجر بهتر است آن را به شکل پلکانی در آورد .

3. فونداسیون شفته ای :
ساده ترین و در عین حال ابتدایی ترین فونداسیون سازی برای ساختمان کوچک 2 یا 3 طبقه آجری است . شفته خمیری است از مخلوط خاک ، آب ، شن و گردآهک که در هر متر مکعب خاک آن بن 200 تا 250 کیلو گرم آهک به کار می رود . گاهی نیز بنابر لزوم مقداری پاره سنگ به آن می افزایند . طریقه شفته ریزی بدین صورت است که شفته را در فونداسیون ریخته و پس از آنکه شفته به حدود 20 یا 30 سانتی متر رسید آن را در یک سطح افقی هموار می کنند و یک روز آن را به حالت خود می گذارند . تا آبش در اثر تبخیر یا جذب کاهش باید ( اصطلاحا دونم شود ) سپس آن را با وزنه ی سنگینی ( تخماق ) می کوبند تا کاملا متراکم گردد . مجددا به همان ارتفاع شفته ریزی انجام گرفته و تا پر شدن فونداسیون همچنان ادامه می یابد .

4. فونداسیون بتنی :
بتن را می توان یکی از مقاومترین و مستحکم ترین سنگ های مصنوعی دانست . لذا فونداسیون هایی که با بتون ساخته می شود ، بهترین فونداسیون در کارهای ساختمان به شمار می آیند . امروزه توصیه می شود . که فونداسیون کلیه ی ساختمانها را با بتون مسلح بسازند به خصوص در مناطق زلزله خیزی نظیر شهر های جنوب خراسان ، دامنه های سلسله ی جبال البرز ، قزوین حتی برای ساختمان سبک و یک طبقه نیز فونداسیون های بتونی از نوع نواری آن بسیار مناسب خواهد بود . زاویه ی پخش بار در فونداسیون های بتنی بین 30 تا 45 درجه می باشد . لذا می توان این گونه فونداسیون ها را پلکانی یا به صورت هرم ناقص ( سومل ) ساخت و از مصرف اضافی بتن صرفه جویی نمود . فونداسیون سازی با بتن بدین طریق انجام می گیرد که ابتدا کف فونداسیون را به اندازه تقریبی 10 سانتی متر بتن کم سیمان با نام مکر می ریزند . که سطح خاک و بتن اصلی را از هم جدا کرده و همچنین سطح پی را جهت بتن ریزی اصلی تراز نمایند . سپس روی بتن مگر داخل پی را با تخته قالب بندی می کنند و پس از آماده شدن قالب بتن ساخته شده را داخل قالب ریخته و خوب می کوبند ویبرا تور ( لرزاننده ) به آن ارزش می دهند .
تا بتون اصطلاحا جا بیفتد یعنی دانه های شن ماسه در بتون عمل جایگیری را کاملا انجام دهند و متراکم گردند . بارگذاری روی فونداسیون های بتنی بایستی حداقل هفت روز پس از پی ریزی انجام می گیرد . ضمنا باید توجه داشت ، چنانچه بتون از نوع مسلح باشد ، باید ابتدا میلگرد در قالب جاسازی شده ، سپس بتن ریزی صورت گیرد ، از این فونداسیون شفته در ساختمان های اسکلت فلزی استفاده می شود .

5. فونداسیون های نقطه ای
برای ساختمانهایی که بار آن ها به صورت متمرکز (نقطه ای)به زمین منتقل می شود ساخته میگردد مانند ساختمان های فلزی یا ساختمان های بتونی

لایه های فونداسیون های نقطه ای:
1.زمین مناسب
2.بتن مگر
3. میلگرد های کف فونداسیون
4.بتن اصلی
5.صفحه زیر ستون(در ساختمانهای اسکلت فلزی)

6. فونداسیون های نواری
این فونداسیون ها معمولا در ساختمان های آجری مورد استفاده قرار می گیرد. حداکثر عمق پی های نواری در حدود 50 و عرض پی قدری بزرگتر از عرض دیوار روی آن می باشد.
لایه های فونداسیون های نواری به ترتیب از پایین به بالا
1.شفته ریزی
2.کرسی چینی
3.شناز
4.ملات ماسه سیمان برای ایزولاسیون رطوبتی
5.قیر گونی
6.ملات ماسه سیمان برای پوشش روی قیر گونی
7.دیوار چینی اصلی

7. فونداسیون های گسترده
به فونداسیون هایی اطلاق می شود که بار چند ستون یا دیوار را که در ردیف ها یا امتداد های مختلف قرار دارند به زمین منتقل می نمایند. پی گستره ممکن است به شکل دال مجموعه تیر_دال و... ساخته شود.
باید توجه کرد که در بندر عباس با توجه به گرمای هوا باید 3الی4 ساعت بعد از ریختن بتن فونداسیون آبدهی بتن آغاز شود و بتن ریزی بعد از ظهر انجام گیرد.
در صورت که بتن ریزی در صبح زود تا قبل از ساعت 10 صبح انجام گیرد دمای بتن را با خنک کردن آب مصرفی بتن .به کار بردن سیمان مناسب با حرارت زدایی کم. پایین نگه داشتن دمای سیمان با نگهداری سیمان در سیلو های عایق بندی شده.
کاهش دمای مصالح سنگی با انبار کردن آنها و یا آب پاشی یا دمیدن هوای سرد به آنها و نگهداری ابزار و ماشین آلات تهیه و حمل مخلوط بتن در سایه و یا آب پاشی به آنها پایین تر از 32 درجه آورد.
لازم به ذکر است حداقل سیمان یا مواد سیمانی در مناطق ساحلی خلیج فارس 350kg/mو حداکثر آن 425kg/m بتن می باشد.
مقدار کلرید های مصرفی در بتن مسلح باید کمتر از 500 قسمت در میلیون باشد.میزان کل کلرید قابل حل در آب بتن سخت شده 28 روزه نیز باید مطابق آیین نامه مقررات ملی ساختمان باشد.

8. فونداسیون صفحه ای :
( رادیوژنرال ) ، در مواردی استفاده می شود که بارهای وارده از ساختمان بسیار بوده (بار آسمان خراش ها ) و یا مقاومت زمین تا قدری کم باشد . که جهت انتقال بار به خاک تمام سطح زیر ساختمان مورد لزوم قرار گیرد . فونداسیون صفحه ای به صورت یک پارچه از بتن آرمه در سر تا سر زیر ساختمان ساخته می شود که میله ی ستون ها و دیوار بر روی آن قرار می کیرد . در بعضی مواقع که بار بسیار زیاد باشد . سطح فونداسیون را بزرگ تر از سطح ساختمان روی آن می سازد تا پخش فشار در سطح بزرگتری انجام پذیرد .
فونداسیون های صفحه ای به صورت مختلف ساخته می شود و مانند فونداسیون صفحه ای ساده صفحه با دیوار محیطی ، صفحه ای با تیر صفحه ای با دیوار بتنی در یک جهت – صفحه ای با دیوار بتنی در دو جهت و فونداسیون های سلولی .

9. فونداسیون های مشترک :
هر گاه برای دو و یا چند ستون یک فونداسیون ساخته شود پی را مشترک گویند . پی مشترک وقتی مورد استفاده قرار می گیرد که :
1 ). فاصله فونداسیون ها از یکدیگر کم بوده و یا طوری باشد که سطح فونداسیون ها ، یکدیگر را بپوشانند .
2 ). یکی از فونداسیون ها در کنار زمین همسایه قرار گرفته باشد .
3 ). وقتی که به علت طول زیاد یک بنا مجبور باشیم ساختمان را درز انبساط ( ژوئن ) بسازیم . در این صورت برای ستون های مجاور درز انبساط فونداسیون مشترک در نظر می گیرد . چنانچه برای در فونداسیون بار های مختلف خواسته باشیم فونداسیون مشترک طرح نمائیم . فونداسیون مزبور به شکل ذوزنقه ای خواهد که قاعده ی کوچک در طرف بار کمتر و قاعده بزرگ آن در جهت باریستنر باشد .

10. فونداسیون باسکولی :
برای جلوگیری از چرخش فونداسیون و تیر و در کنار دیوار همسایه از فونداسیون باسکولی یا استواپییم استفاده می شود

11. فونداسیون های کلاف شده :
اتصال دو فونداسیون فنرو توسط شناژ ( بتن آرمه ) را پی کلاف شده می نامند . در مناطق زلزله خیز بهترین نوع فونداسیون برای ساختمانهای مسکونی معمولی به حساب می آید . در حالتی که ضخامت شفاژ از ارتفاع پی کمتر باشد ، به دو صورت اتصال صورت می گیرد :
الف : سطح بالایی شناژ و سطح بالایی فونداسیون در یک امتداد قرار می گیرد .
ب : سطح زیر شناژ با سطح زیر فونداسیون در یک امتداد قرار می گیرد .

12. فونداسیون های شمعی :
شمعها اعضایی از جنس فولاد ، بتن ، بتن مسلح ، و چوب می باشند که در صورت مناسب نبودن ظرفیت باربری زمین برای استفاده از شالوده های سطحی ، از آنها برای ساخت شالوده های عمیق ( شالوده های شمعی ) استفاده می شود . وقتی که لایه یا لایه های فوقانی خاک دارای قابلیت فشردگی زیاد و یا خیلی ضعیف باشند ، به طوری که نتوان از شالوده سطحی برای توزیع بار ساختمان استفاده کرد ، شالوده های شمعی برای انتقال بار به لایه تحتانی محکمتر و یا سنگ بستر مورد استفاده قرار می گیرند. وقتی که بستر سنگی و یا لایه محکمتر تحتانی در عمق معقولی از سطح زمین قرار نداشته باشد ، از شمع برای انتقال تدریجی بار استفاده میشود . در این حالت ، بیشتر مقاومت شمع از طریق نیروی اصطکاک بین سطح تماس شمع و خاک ( مقاومت جلدی ) تامین میشود . اگر شمع ها تحت تاثیر نیروی افقی قرار گیرند ، در حالی که هنوز قابلیت حمل بار های قایم را دارا هستند ، می توانند به وسیله خمش ، نیرو های افقی راحمل نمایند . این وضعیت اغلب در شالوده سازه های حایل خاک که وظیفه آنها مقاومت در مقابل فشار جانبی خاک است و یا ساختمان های بلند که تحت تاثیر نیروی باد یا زلزله قرار دارند ، پیش می آید

شیوه های نوین در عایق کاری حرارتی ساختمان ها

شیوه های نوین در عایق کاری حرارتی ساختمان ها

عایق رطوبتی با قابلیت انعطاف زمینه جدیدی برای مصرف امولسیونی پلیمر پایه آب امروزه مانند قرنها پیش ساخته شده از قیر همچنان بعنوان رایج ترین روش پوشش کف مورد استفاده قرار می گیرد کاربرد قیر و یا آسفالت دشوار و مستلزم صرف وقت زیاد می باشد حتی امولسیونهای ساخته شده از قیر نیز تغییر اندکی را در دشواری این کاربرد ایجاد نموده اند.

یکی از مشکلات اساسی که در اکثر سازه ها به چشم می خورد مشکل نم و رطوبت می باشد که در بعضی مواقع خسارات جبران ناپذیری را به ساز ها و ساختمان وارد می نماید و یکی از راهکارهای مقابله با ‎‎آن عایقکاری رطوبتی می باشد .
در ایران با توجه به اقلیم و آب و هوا و نیز وجود منابع عظیم نفتی متداولترین عایق رطوبتی قیر و گونی می باشد که با پیشرفت تکنولوژی این روش جای خود را به عایقهای پیش ساخته ( ایزو گام) داده است .
اما با پیشرفت علوم ونیز گرانی مواد نفتی و قیر در بعضی مواقع عایقهای پیش یاخته نیز مقرون به صرفه نبوده و مهندسان را به آن داشت تا از مواد شیمیایی جهت عایق بندی سازه استفاده کنند که هم از نظر اقتصادی و هم از نظر کیفیت و کارایی بتواند با سایر عایقها رقابت کند .
بعد از تحقیقات متعدد مهندسان موفق شدند که با استفاده از رزینهای اکریلاتی و استایرنی که با آب حل می شود ، عایق رطوبتی جدیدی بسازند که صورت یک لایه mm 1 روی سطوح مورد نیاز اجرا میشود و انعطاف پذیر نیز می باشد . این مقاله به بررسی و مطالعه عایق جدید و مقایسه آن با سایر عایقهای رطوبتی می پردازد .


مقدمه
عایق رطوبتی با قابلیت انعطاف زمینه جدیدی برای مصرف امولسیونی پلیمر پایه آب امروزه مانند قرنها پیش ساخته شده از قیر همچنان بعنوان رایج ترین روش پوشش کف مورد استفاده قرار می گیرد کاربرد قیر و یا آسفالت دشوار و مستلزم صرف وقت زیاد می باشد حتی امولسیونهای ساخته شده از قیر نیز تغییر اندکی را در دشواری این کاربرد ایجاد نموده اند.

همانطور که می دانید باید قیروگونی را تا میزان ۱۵۰ تا ۲۰۰ درجه سانتیگراد حرارت داد ، ریختن و تسطیح ترکیبی با این درجه حرارت بسیار دشوار می باشد . بنابراین امولسیونهای ساخته شده از قیر با قابلیت کاربرد درجه حرارت نرمال مورد استفاده قرار می گیرد.

اینگونه امولسیونهای نفتی در آب حدوداً دارای ۵۰% قیر می باشد . با سفت شدن این امولسیون آب آن تبخیر و قیر بصورت بیندر باقی می ماند.

ترکیبات کف سازی بام ، بر پایه امولسیون پلیمرهای جدید عملکرد کاملا‏ً متفاوتی دارند ، شاید مهمترین ویژگی آنها ایجاد یک لایه نازک ( فیلم )با قابلیت انعطاف بعد از خشک شدن باشد.

از جمله مزایای این عایق جدید به شرح زیر است :
۱ – فاقد آلودگی و آسیب های فیزولوژی می باشد.
۲ – کاربرد آنها ساده است .
۳ – رنگ پذیرند .
۴ – خطر آتش سوزی ندارند .
۵ – چسبندگی خوبی نسبت به سطوح مختلف دارند .
در این مقاله به معرفی عایقهای قیروگونی و عایقهای پیش ساخته ، سپس به معرفی یک نوع عایق جدی که از رزینهای اکریلاتی و استایرنی محلول در آب ساخته شده می پردازد.

عایق رطوبتی قیروگونی
این عایق یکی از متداولترین عایق مصرفی در ایران می باشد به این علت که در اکثر شهرهای کشور مواد اولیه این عایقکاری به وفور یافت می شود .
مواد مورد نیاز در این عایق گونی و قیر می باشد ، که گونی مورد نیاز از کشورهای خارجی وارد می شود و در سه اندازه مختلف به نامهای ، گونی درجه یک ، درجه دو ، درجه سه در بازار یافت می شود .
طبق آئین نامه مقررات ملی ایران ( مبحث ۵ ) مشخصات گونی ایده آل عبارتند از : گونی باید نو ، ریز بافت ، کاملاً سالم وبدون آلودگی و چروک باشد و وزن آن در هر مترمربع حدود ۳۸۰ گرم باشد.
قیر ماده ایست سیاه رنگ مرکب از هیدروکربنهای آلی با ترکیبات پیچیده که از تقطیر نفت خام بدست می آید.
انواع قیر که در کشور می باشد دو دسته هستند :
الف –۱ ) قیرهای جامد که علامت اختصاری آنها A.C است و مستقیماً از تقطیر نفت خام بدست می آید و بر حسب درجه نفوذپذیریشان نامگذاری می شوند و انواع اینگونه قیرها در ایران به رح زیر می باشد :
قیرهای : ۷۰-۶۰ ، ۱۰۰-۸۵ ، ۱۵۰-۱۳۰ ، ۲۰۰-۱۸۰ ، ۲۵۰ –۲۲۰ ، ۳۲۰ –۲۸۰
الف – ۲ ) قیرهای که با هوادادن به یکی از قیرهای نرم فوق تهیه می شوند و عبارتند از : قیرهای : ۲۰ –۱۰ ، ۳۰ –۲۰ ، ۵۰ –۴۰ و در بعضی موارد۷۰ – ۶۰
ب ) قیر جامد اکسید شده که با علامت اختصاری R که معرف انعطاف پذیری قیر است نمایش داده می شود ، این قیر از دمیدن هوا در مخلوطی از قیرهای نرم و مواد روغنی سنگین بدست می آید و بر حسب نقطه نرمی و درجه نفوذپذیری بصورت زیر نامگذاری کرده اند : ۲۵ –۸۵ R ، ۱۵ – ۹۰ R

ویژگیهای عمومی قیرها
۱- غیر قابل نفوذپذیر در مقابل آب و رطوبت
۲- مقاومت در برابر اسیدها، بازها و نمکها
۳- چسبندگی

معایب قیر
قیر در وضعیتهای زیر برخی از خواص خود را از دست می دهد ، به طوریکه نمی توان از آن به خوبی اسفاده کرد :
الف ) تجزیه شدن در دمای زیاد و تبدیل آن به ذغال ، توأم با اشتعال
ب ) تغییر شکل در مقال فشار و حلالها

مزایا
۱- صرفه اقتصادی نسبت به بعضی عایقهای رطوبتی
۲- اطمینان از نظر کارایی با توجه به پیشینه مصرف

معایب عایق قیروگونی
۱- پوسیدگی این عایق به مرور زمان
۲- پارگی بر اثر نشتهای احتمالی ساختمان
۳- عمر مفیدعایق به طور متوسط کمتر از ۱۰ سال بوده و ترمیم متناوب آن با مشکلات اجرایی زیاد و هزینه های قابل توجه همراه است .
۴- آلودگی محیط زیست را به دنبال دارد.

عایقهای پیش ساخته ( ایزوگام )
این عایقها معمولاً از مواد اولیه زیر تشکیل می شوند :
۱- قیرصنعتی ۷۰-۶۰
۲- مواد پلیمری به نام اتکتیک پلی پروپیلن ( APP )
3- یک لایه تیشوی نخدار ( پشم شیشه )
۴- یک لایه پلی استر سوزنی
۵- پودرتالک و در بعضی از این عایقها پودر مس ۶۰۰ نیز بکار می رود .
۶- فیلم پلی اتیلن
۷- باند و چسب

طبق استاندارد ایران این عایقها به دو دسته تقسیم می شوند
۱- عایقهای رطوبتی پیش ساخته مخصوص پی ساختمان ( عایق پی )
۲- عایقهای رطوبتی پیش ساخته مخصوص سطوح خارجی ، بدنه استخر و تونلها ( عایق بام )
استاندارد ایران برای هر یک از این عایقها مواردی را معرفی می کند که در این قسمت آمده است :

اجزای تشکیل دهنده عایق پی
۱- لایی : انواع لایی های زیر می توان در این عایق مورد استفاده قرار گیرد :
الف –۱ ) فلت الیاف شیشه ( تی ) مطابق مشخصات استاندارد ۳۸۹۱
ب – ۱ ) فلت الیاف پلی استر مطابق مشخصات استاندارد ۳۸۸۰
ج – ۱ ) منسوج نبافته پلی استر مطابق با استاندارد ۳۸۸۹ همراه فلت الیاف شیشه مطابق مشخصات استاندارد ۳۸۹۱
۲- ماده آغشته کننده لایی :
ماده اغشته کننده هر یک ازلایی ها می تواند قیرو یا مخلوطی از قیروافزودنیهای اصلاح کننده باشد.
سطح رویین عایق باید به منظور جلوگیری از چشبندگی داخل رول از مواد ریزدانه معدنی مثل پودر تالک و یا میکا پوشیده شود .
سطح رویین باید یکواخت و عاری از هر گونه خوردگی و چین وچروک باشد
سطح زیرین عایق رطوبتی باید با فیلم پلاستیکی و یا مواد ریزدانه معدنی مثل پودر تالک پوشیده شود .

اجزای تشکیل دهنده عایق بام
متشکل از دو لایه نمدی است که لایه زیرین از فلت الیاف شیشه و لایه رویین از جنس منسوجات پلی استر می باشد ، این دو لایه بوسیله مذاب قیر اصلاح شده با مواد پلیمری اشباع می گردد ، به هنگام بسته بندی برای جلوگیری از چسبندگی هر طرف عایق با مواد ریزدانه و یافیلم پلاستیکی روکش می گردد .
در اینجا لازم است که مشخصات استاندارد بعضی از مواد اولیه عایقهای مذکور را بیان کنیم .
منسوج پلی استر که بعنوان لایه اشباع شونده از مذاب قیری در عایقهای رطوبتی پیش ساخته بکار می رود

ویژگیهای پلی استر نبافته
۱٫ منسوج باید ۱۰۰ % از پلی استر تولید شده باشد.
۲٫ سطح منسوج باید یکنواخت و نسبتاً صاف و هموار باشد .
۳٫ منسوج در هنگام تا کردن ، تکه تکه و پاره کردن باید نسبتاً عاری از ذرات و مواد خارجی قابل مشاهده باشد.
۴٫ منسوج باید که در هنگام رول در دمای ۱۰ تا ۶۰ درجه سانتی گراد چسبندگی نداشته باشد .
۵٫ وزن هر رول نباید از ۴۰ کیلوگرم تجاوز کند .
۶٫ جذب شیره پلی استر باید یکنواخت و یکدست باشد .
۷٫ رول ها باید به نحوی بسته بندی شوند که هنگام جابجایی اولاً باز نشوند ، ثانیاً بسته بندی باید منظم و عاری از وجود هر گونه فرورفتگی یا برآمدگی در مقطع بیرونی باشد .
۸٫ رول ها باید در یک لفاف کاغذی یا پلاستیکی بسته بندی شوند

ویژگیهای فیزیکی پلی استر نبافته
۱٫ حداقل جرم واحد سطح ۱۰۵ گرم بر متر مربع
۲٫ حداقل مقاومت کششی طولی ۲۰۰ نیوتن بر ۵۰ میلیمتر
۳٫ حداقل مقاومت کششی عرضی ۱۵۰ نیوتن بر ۵۰ میلیمتر
۴٫ حداقل افزایش نسبی طولی ۵۰ درصد
۵٫ حداقل افزایش نسبی عرضی ۶۰ درصد
۶٫ حداکثر کاهش وزن در دمای ۱۰۵ درجه به مدت ۵ ساعت ۲ درصدد

ویژگیهای فلت الیاف شیشه ( تیشو )
۱٫ فلت الیاف شیشه می بایستی دارای سطحی یکنواخت باشد.
۲٫ فلت الیاف شیشه باید با رزین آغشته و پس از مراحل حرارت دهی کل از نظر شکل ظاهری و رنگ یکنواخت باشد.
۳٫ فلت الیاف شیشه باید دارای نخ های تقویت از جنس شیشه باشد که فواصل معین و یکنواخت بطور پیوسته در تمامی طول فلت ادامه یابد .
۴٫ روی سطح فلت باید هیچگونه خرده شیشه مشاهده نگردد.
۵٫ فلت الیاف شیشه باید عاری از رطوبت بوده ، هنگام باز نمودن رول چسبنده نباشد .
۶٫ فلت نباید براحتی دو پوسته شود و باید لبه های آن صاف و بدون چروک باشد .

ویژگیهای فلت الیاف شیشه
شـرح میزان واحد
عرض ۵۵ گرم بر متر مربع
جرم واحد سطح ۲۰ گرم بر متر مربع
حداکثر فاصله نخ های تقویت کننده ۲۰ میلیمتر
حداقل مقاومت کششی طولی ۱۵ کیلوگرم بر ۵۰ میلیمتر
حداقل مقاومت کششی عرضی ۲ کیلوگرم بر ۵۰ میلیمتر
حداقل افزایش نسبی طولی ۵/۱ درصد
حداقل افزایش نسبی عرضی ۲/۱ درصد

اکثر عایقهای رطوبتی پیش ساخته دارای مشخصات استاندارد زیر می باشند که عبارتند از :
۱- وزن یک رول در حدود ۴۳ کیلوگرم و در ابعاد ۱ × ۱۰ متر
۲- ضخامت از ۲ میلیمتر تا ۶ میلیمتر که حد استاندارد ۴ میلیمتر
۳- مقاومت کششی طولی ۶۰-۵۰ و مقاومت کششی عرضی ۳۵-۳۰ کیلوگرم بر ۵۰ سانتی متر
۴- افزایش نسبی طولی ۱۶-۱۴ وافزایش نسبی عرضی ۱۰ –۸ %
۵- مقاومت پارگی طولی ۱۰-۹ و مقاومت پارگی عرضی ۵-۴ کیلوگرم نیرو
۶- تاب کششی اتصالات انتهایی ۱۰۰
۷- جذب آب ۱ % و کاهش وزن ۱ %
۸- وزن واحد سطح ۲/۴ کیلوگرم بر سانتیمتر مربع
۹- انعطاف پذیری در سرما ۱۰- درجه
۱۰- پایداری ابعاد در برابر حرارت ۱ متر
۱۱- میزان نفوذناپذیری آب
۱۲- فرسودگی حرارتی در هوا حداکثر افت در دمای انعطاف پذیری ۱۰ درجه
۱۳-مقاومت در برابر اشعه فرابنفش حداکثر افت در دمای انعطاف پذیری ۱۰ درجه
حال در این قسمت لازم است مزایا و معایب این نوع عایقها را نیز ذکر کنیم .

مزایای عایقهای رطوبتی پیش ساخته
۱- سبک بودن به مقدار حدود ۴ کیلوگرم بر متر مربع
۲- مقاوم در گرمای ۱۳۰+ درجه و سرمای ۴۰- درجه
۳- دچار پوسیدگی و شکنندگی نمی شوند.
۴- دارای قابلیت انعطاف کامل می باشند.
۵- بعلت دارا بودن لایه پلی استر در مقابل فشارهای احتمالی از انبساط و انقباض ساختمان مقاوم می باشد.

معایب
۱- فاسد شدن عایق بعد از ۶ ماه ( از زمان تولید ) بعلت عدم نکهداری مطلوب ( باید بصورت عمودی در دمای ۵ تا ۳۵ درجه نگهداری شود )
۲- کم بودن طول عمرمفید(طول عمر در حدود ۱۵ سال )
۳- گران بودن این عایقها ( عایقهایی که دارای مواد اولیه خارجی می باشند )
۴- در موقع ترمیم محل آسیب دیده از سایر جاها بالا می زند.
۵- تجزیه شدن بر اثر اشعه ماورابنفش

در این نوع عایقها (قیروگونی و پیش ساخته ) باید سطح کار عاری از گرد و خاک و رطوبت باشد و اگر سطح آسفالت باشد برای عایقکاری با ایزوگام باید به ازاء هر متر مربع سطح حداقل ۳۰۰ گرم مشتق قیری رقیق شده در آب یا بنزین روی سطح پخش گردد و اگر سطح سیمانی بود باید به ازاء هر متر مربع سطح حداقل ۲۸۰ گرم مشتق قیری رقیق شده در آب یا بنزین روی سطح پخش گردد .
بعضی از کارخانه های تولید کننده عایقهای پیش ساخته عایق با روکش آلومینیوم نیز تولید می کنند که حدود ۸۵ % از نور و حرارت را منعکس می کند .
بعد از معرفی عایقهای رطوبتی مذکور به معرفی عایق رطوبتی جدید می پردازیم . همانطور که در مقدمه طرح شد گران بودن قیر در سالهای اخیر شرکتهای تولید کننده مواد شیمیایی یک عایق رطوبتی با کارایی وکیفیت بهتر نسبت به سایر عایقها تولید کننده که این تلاشها به ثمر نشست و این عایق در حال حاضر در بازار موجود و از آن استفاده می شود.

مشخصات ساختاری
اندود عایق SH-765M ماستیکی است بر پایه رزینهای اکریلاتی و استایرنی محلول در آب به همراه افزودنی های لازم جهت پایداری در شرایط جوی متفاوت روی سطوح ساختمانی که بر پایه رزین Mowilith شرکت هوخست آلمان ساخته شده است .

کاربردهای پیشنهادی
۱- پوشش یا اندود انعطاف پذیر عایق در آب و رطوبت
۲- جایگزین مناسب و اقتصادی به جای قیروگونی ، آسفالت و سایر ایزولاسیون های ساختمانی پایدار.
۳- باز دارنده ترکهای سطحی در پوشش نما .
۴- تقویت روکش های نما .

مشخصات فیزیکی
مشخصات اندود عایق واحد مقدار
درصد جامد درصد ۱- ۷۳
گرانروی با دستگاه بروکفیلد با سوزن ۷ دور ۲۰ دمای ۲۳ درجه Pas 372
PH – 9-8
شکل ظاهری – تقریباً سفید
حداقل دمای تشکیل فیلم سانتی گراد صفر
مقاومت کششی N/mm 2

مشخصات فنی رزین ـ تولید عایق
پایه رزینی : پلیمری است امولسیونی متشکل از اسید اکریلیک ، متاکریلیک و استایرن ساخت هوخست با انعطاف پذیری فوق العاده بالا.
مشخصات فنی رزین

مشخصات فنی رزین هوخست HOECHST واحد مقدار
درصد مواد جامد ( DIN 53189 ) درصد ۱+۵۰
گرانروی ( ۲۳ C ISO 2555 ) با دستگاه Brook field محور ۵ سرعت ۲۰ دور Mpa . s 3500-7500
9-8 PH =
حداقل دمای تشکیل فیلم MFT C صفر
وزن مخصوص ( ISO 8962 ) Gr / cm 01/1
مقاومت کششی ( DIN 53455 ) N/mm 5/2
حداکثر کشش ( DIN 53455 ) درصد ۸۰۰
دمای شیشه ای Tg C 6-

سنجش مشخصات فیلم رزین طبق آئین نامه DIN- EN23270 در دمای ۲۳ درجه سانتی گراد و رطوبت نسبی ۵۰ % انجام شده است .

مواد تشکیل دهنده عایق
۱- رزین مخصوص تولید شرکت هوخست بر پایه اکریلیک – استایرن
۲- مواد تکمیلی عایق : شامل مواد دیسپرس کننده – امولسی فایر- مواد تنظیم کننده غلظت – مواد نگهدارنده – مواد تنظیم کننده PH – مواد پوشش دهنده فیلم عایق .
۳- کمک کننده های مکانیکی
پودرهای معدنی جهت بالابردن مقاومت مکانیکی نفوذ پذیری فیلم حاصل از اندود عایق
الف – کربنات کلسیم ب – پودر تالک ج – پودر کائولن

مشخصات فنی اندود عایق SH 765M
مشخصات فنی اندود عایق SH 765M واحد مقدار
درصد مواد جامد اندود عایق درصد ۷۲-۷۰
گرانروی pa . s 500-300
حداقل دمای تشکیل فیلم درجه صفر
مقاومت کششی N / mm 2
مقدار پوشش کیلو متر مربع
ضخامت فیلم حاصل Mm 1
PH – 9-8

اندود عایق SH 765M قلیایی است و مقاومت قلیایی بسیار بالایی دارد و لذا در مقابل مواد آهکی از خود مقاومت کافی نشان می دهد .
این عایق در مکانهایی که در معرض رطوت می باشد اجرا می شود ولی بدون تردید ثبات سطح زیرین در پایداری محصول تأثیر مستقیم دارد .
در مورد ترکیبات پوشش بام ، حداقل آب به اندازه قابلیت انعطاف لایه های نازک امولسیون دارای اهمیت می باشد که این مزایا بخوبی در امولسیون پولیمرموویلیت وی پی ۷۶۵ تقریباً ۵۰ % وجود دارد .میزان جذب آب یک لایه از این امولسیون به ضخامت خدود ۱ میلیمتر ، ۱۰ روز بعد از خشک شدن که به مدت ۲۴ ساعت در آب غوطه ور باشد ۵ تا ۷ درصد می باشد.

کاربرد‌
ترکیب پوشش کف بام بر پایه موویلیت وی پی ۷۶۵ می توان بصورت خمیری باشد و کاربری آن با غلظت و یا قلم مو و یا دستگاه اسپری بسیار آسان است . بطوریکه یک فرد غیر حرفه ای نیز می تواند آن را مصرف نماید . لیکن استفاده از دستگاههای اسپری با فشار زیاد نیازمند تخصص می باشد .تجربیات عملی ما نشان داده است که این امولسیون به سطوح تازه ساخته شده از بتن ، چوب ، موزائیک و آزبست چسبندگی خوبی دارد .
قبل از کاربرد این ترکیب سطوح مورد نظر باید تمیز و خشک باشند . سطوح ناصاف و شیبدار باید آماده سازی شوند . برای این منظور می توان امولسین را با آب رقیق و استفاده نمود ، قبل از کاربرد ترکیب بر روی سطوح فلزی باید از مواد ضد خورندگی روی سطوح آهن استفاده نمود برای گرفتن درزه و پر کردن سوراخها ، مخلوط امولسیون پوشش کف با خاک سنگ به نسبت ۳ : ۱ مورد استفاه قرار می گیرد.
ابتدا باید سطح کاملاً تمیز شود ، سپس SH 700P پرایمر را بوسیله قلم مو و یا پیستوله در سطح ساختمانی اجراء می نمائیم ، پس از گذشت یک ساعت اندود SH 765M را به کمک ماله یا کاردک بصورت یکنواخت روی سطح اجراء می کنیم ، ضخامت نهایی عایق باید حدود ۱ میلیمتر باشد.
برای روان کردن ماستیک می توان از مقدار اندکی آب و یا نفت استفاده کرد .

خشک شدن
زمان خشک شدن بستگی به ماده ، درجه حرارت هوا ، حرارت سطح مورد نظر ، رطوبت و ضخامت پوشش دارد . به عنوان مثال در هوای با درجه حرارت ۲۵ درجه سانتی گراد و رطوبت ۶۵ % زمان مورد نیاز برای خشک شدن لایه حدود ۳ ساعت خواهد بود.

قابلیت انعطاف
پوشش های کف بام به دلیل تغییرات حرارت هوا در معرض فشار می باشد.بنابراین باید از قابلیت انبساط بالایی برخوردار باشند . پوشش کف بر پایه موویلیت وی پی ۷۶۵ به ضخامت ۵/۱ میلیمتر در درجه حرارت ۱۰- در جه سانتی گراد ۲ % قابلیت انبساط می باشد.

قابلیت پوشش
برای پوشش معادل یک متر مربع از لایه به ضخامت ۱ تا ۵/۱ میلیمتر حدود یک کیلوگرم از ترکیب فوق مورد نیاز می باشد .بدیهی است برای لایه بعدی به تعداد کمتری از این ترکیب نیاز خواهد بود . هزینه مواد مصرفی برای این پوشش بیش از ترکیبات قیری می باشد ولی سرعت در کاربرد آن هزینه اضافی را خنثی می کند .

تغییرات شدید هوا
اگر چه تاکنون تجربیات در زمینه کاربرد این روش پوشش کف در دراز مدت بدست نیامده است ( سطوح خارجی ) آزمایشات متعدد کوتاه مدت در شرایط مختلف آب و هوایی بعمل آمده است .
نمونه ها در معرض شرایط زیر قرار کرفته اند :
۱- حدوداً بمدت ۲۰ دقیقه در هوای با دمای ۴۰ درجه سانتی گراد و رطوبت ۶۵ %
۲- حدوداً بمدت ۳۰ دقیقه در اشعه مادون قرمز ۱۵۰ وات حرارت سطح نمونه حدود ۶۵ درجه
۳- حدوداً بمدت ۵ دقیقه در هوایی با دمای ۴۰ درجه سانتی گراد و رطوبت ۶۵ %
۴- حدوداً بمدت ۳۰ دقیقه در آب با دمای ۴۰ درجه سانتی گراد
۵- حدوداً بمدت ۶۵ دقیقه دراتاقک سرما با برودت۱۰- درجه سانتی گراد
با بررسی ظاهری پس از ۵۰۰ ساعت ( ۱۶۲ نوبت ) آزمایش کوتاه مدت هیچگونه آسیبی در نمونه های بکاررفته در سطوح آزبست ، آلومینیم مشاهده نگردیده است .
پس از ۲۰۰ ساعت ( ۶۴۸ نوبت ) آزمایش کوتاه مدت ، قابلیت انبساط و کشیدگی مورد اندازه گیری قرار گرفت ، بطوریکه در جدول زیر مشاهده می گردد ، قابلیت کشیدگی ترکیب بعد از این مدت اندکی کاهش یافته لیکن قابلیت انبساط آن اندکی افزایش یافته است .
دمای محیط هنگام اجراء باید بیش از ۵ درجه سانتی گراد باشد .
پس از اجراء تا ۷۲ ساعت از راه رفتن روی عایق اجتناب کنید .
سطح اندود شده را هرگز با اجسام کوبنده و یا نوک تیز ضربه نزنید ، در صورت زخمی شدن سطح آن را باید ترمیم کرد.

روش ترمیم
در صورت نیاز به ترمیم بخش آسیب دیده می توانید سطح قبلی را نخست با استفاده از پرایمر پوشش داده و سپس مطابق دستوالعمل فوق با استفاده از ماستیک روی محل مورد نظر اجراء نموده و پوشش داد .

شرایط نگهداری
اندود عایق و پرایمر را می توان به مدت ۶ ماه در دمای بین ۵ الی ۲۵ درجه در انبار نگهداری کرد.

مزایای این عایق
۱- اجراء سریع و آسان
۲- امکان تعویض رنگ آن
۳- عمر زیاد آن ( در حدود ۴۰- ۳۰ سال )
۴- عدم تأثیر گذاری اسیدها ، بازها و سایر مواد شیمیایی بر این نوع عایق
۵- قیمت مناسب ( هر متر مربع حدوداً ۱۰۰۰۰ ریال می باشد )
۶- انعطاف پذیری فوق العاده بالا
۷- عدم آلودگی زیست محیطی

نتایج
روشهای پوشش کف با قابلیت انعطاف ، زمینه های جدید استفاده از امولسیون پلیمر می باشد . انجام آزمایشاتی در ارتباط با طول عمر واقعی این پوشش کف ، قبل از هر گونه ازریابی ضروری است . لیکن مزایای کاربرد در مقایسه با ترکیبات ساخته شده از قیر کاملاً روشن است .
تجربیات و نتایج حاصل از آزمایشات نوید آن است که موویلیت وی پی ۷۶۵ ترکیب بسیار مناسبی برای پوشش کف باشد .

منابع
۱- مقررات ملی ساختمان – مبحث ۵
۲- نشریه استاندارد عایقهای رطوبتی

خَرَک‌گذاری فونداسیون۰

خَرَک‌گذاری فونداسیون۰

پس از قالب بندی فونداسیون آرماتورگذاری فونداسیون آغاز می­شود. برای نگهداری میلگردها در محل خود تا مرحله بتن­ریزی باید از نگهدارنده­های موقت استفاده نمود. برای نگهداری میلگردهای پایینی استفاده از قطعات سیمانی و یا فاصله اندازهای پلاستیکی Spacer به راحتی میسر می­باشد. تعداد و فاصله و مهار این قطعات به آرماتورها باید به نحوی باشد که آرماتورها در فاصله مناسب (مقدار پوشش Cover) از روی بتن مگر قرار گرفته و همچنین در حین اجرای سایر آرماتورها و در حین بتن­ریزی از محل خود خارج نشوند.

با توجه به اینکه در فونداسیون­ها از خاموت استفاده نمی­شود، برای بستن آرماتورهای فوقانی از آرماتورهای پایه­دار که به خَرَک معروف هستند استفاده می­شود. ارتفاع، عرض پایه­ها، عرض خَرَک و فاصله و قطر آنها بر اساس ابعاد فونداسیون و میزان میلگرد فوقانی که بایستی خَرَک تحمل کند تعیین می­شود. در عین حال ابعاد و فاصله خَرَک­ها باید به گونه­ای انتخاب شود تا در زمان اجرای آرماتورها و یا در زمان بتن­ریزی بتواند از محل خود خارج نشده و میزان پوشش بتن در تمام فونداسیون رعایت شود. نکات زیر در زمان اجرای خَرَک توصیه می­شود:

۱- ارتفاع خَرَک به نحوی باشد که میزان پوشش بتن برای آرماتور بالایی رعایت گردد.

۲- ابعاد پاشنه خَرَک حداقل ۵۰ سانتیمتر در نظر گرفته شود.

۳- فاصله حداکثر خَرَک­ها برابر ۵۰/۱ متر در نظر گرفته شود.

۴- شماره آرماتور خرک به عمق پی بستگی دارد. برای فونداسیون­های با عمق بیشتر از خَرَک با شماره بالاتر استفاده شود. در هر حالت شماره آرماتور خَرَک از ۱۴ کمتر نباشد.

۵- به طور مرسوم مقدار آرماتور لازم برای خَرَک در لیست ارماتورهای ارائه شده برای فونداسیون منظور نمی­شود. میزان این آرماتور باید توسط پیمانکار محاسبه و به لیست آرماتورهای لازم برای خرید اضافه شود.

۶- عرض خَرَک به نحوی انتخاب شود تا تمام آرماتورهای فوقانی بتوانند روی آن قرار گیرند.

۷- الزاماَ تمام آرماتورهای طولی به خَرَک با سیم بسته شوند در غیر این صورت در زمان بتن­ریزی آرماتورها فاقد بست دچار خم­شدگی شده و میزان پوشش رعایت نخواهد شد.

۸- در نواحی دارای آرماتور تقویت زیاد تعداد خَرَک­ها افزایش داده شود.

شکل زیر نمونه­ای از خَرَک­گذاری و لقمه­گذاری آرماتورهای فونداسیون را نشان می­دهد.

01 02-a 02-b 03

دیتایل پایین و توضیحات آن جزئیات خرک­ها و نکات مهم آن را که در نقشه­های اجرایی وجود دارد را نشان می­دهد. در صورت تمایل به دسترسی به فایل اتوکد دیتایل­های اجرایی فونداسیون در لینک زیر بروید.

سفارش فایل اتوکد یتایل­های اجرایی خَرَک‌ها

برای دانلود رایگان PDF دیتایل‌های خرک‌ها به پایین صفحه بروید.

Kharak (www.omranhami.com)

: رسم نقشه فونداسیون

RE: رسم نقشه فونداسیون

با امکانات Detailing برنامه ی سیف میشه این کار رو انجام داد ولی این قسمت در برنامه های کرک شده درست کار نمیکنه و شما نمی تونید از اون استفاده کنید

شما باید شکل پی رو توی اتوکد رسم کنید و یک دیتایل پی که حاوی تعداد و آرایش آرماتوها هست رو هم بکشید(کار سختی نیست)

[تصویر:  93dczqobsbhufpd0d2d.gif]

 

نحوه بارگذاری و توزیع بار آسانسور در سازه

نحوه بارگذاری و توزیع بار آسانسور در سازه


مقدار بار بستگی به نوع آسانسور انتخابی دارد. برای بدست آوردن وزن آسانسور با توجه به ظرفیت آن بایستی به جدول شماره ۱ پیوست ۲ مبحث پانزدهم مقررات ملی ساختمان ( آسانسور ها و پله برقی ) مراجعه نمایید.

بر اساس بندی در همین آیین نامه بایستی کلیه نیروی های وارده به سازه بر اثر آسانسور برای لحاظ نمودن ضربه های دینامیکی ۱۰۰% افزایش یابد. البته این بار نسبت به بقیه بارهای وارد بر سازه زیاد نیست. میزان بار زنده برابر ۴۰۰ و میزان بار مرده توسط مشخصات فنی شرکت سازنده مشخص میشود که میتوان بصورت عمومی برای ساختمانهای ۵ طبقه ۸۰۰ تا ۱۰۰۰ کیلو در نظر گرفت و این بارها به نبشی ها و از آنجا به چاله آسانسور انتقال پیدا میکنند و در نهایت بار آسانسور را باید تنها به صورت ۴ بار متمرکز به ستون های دور باکس آسانسور (نبشی ها) در طبقه آخر (خرپشته) اعمال نمود.

نحوه انتقال بار آسانسور:
در عمل نیروی آسانسور بین تیر هایی که در اطراف داکت قرار داده می شوند و شاستی آسانسور هم به این تیر ها متصل می گردد منتقل می گردد اما از لحاظ فنی در اطاقک آسانسور تکیه گاه هایی که در اطراف حفره آسانسور قرار دارند و نیروی وزن اطاقک به این تکیه گاه ها وارد می شود نیروی کلی را تحمل می نمایند آسانسورهای معمولی از چهار عدد نبشی برای دور باکس آسانسور استفاده میشود. این نبشی ها در تراز طبقات به تیرهای سقف مهار میگردند.

اتصال آسانسور به سازه:
سازه آسانسور تنها از یک وجه به سازه اصلی متصل است. برای طراحی اتصالات آسانسور جدولی داریم که به عنوان مثال بیان میکند که اگر ظرفیت آسانسور ما ۶ یا ۸ نفره است از چه نبشی، از چه ریل راهنمایی، از چه براکتی و … استفاده کنیم.
در مورد نحوه اتصال، بصورت عمومی در ساختمانهای بتنی با قرار دادن plate توی تیر یا هر جایی که قابلیت اتصال دارد بوسیله شاخک هایی نبشی های آسانسور را به آنها جوش میکنند. نبشی فقط نقش ریل دارد و باربر نیست. سازه آسانسور به مهاربند نیاز ندارد یک دیافراگم داریم با باری محوری که توسط کابل تحمل میشود و به تیر های دور باکس واقع در خرپشته منتقل میشود.

معمولا از مدل سازی اثر آسانسور در etabs صرف نظر میشود. چون سازه آسانسور کاملا جدا از سازه می باشد بهتر است فونداسیون آن نیز بصورت جداگانه طراحی شود. چاله آسانسور باید در تمامی موارد تعبیه گردد و در طراحی پی باید محل چاله آسانسور در نظر گرفته شود.

نحوه مدل کردن چاله آسانسور در SAFE :
چاله آسانسور در نرم افزار Safe تنها به صورت یک بازشو تعریف شده و با توجه به سادگی طراحی دستی آن امکان پذیر است. همچنین در پی های گسترده با تنظیمات در بخش Detailing می توان آرماتورهای گوشه های بازشو را مطابق آیین نامه بدست آورد .چون نرم افزار SAFE قادر به طراحی در حالتی که در پی اختلاف تراز وجود دارد، نیست و سطح را در یک تراز در نظر می گیرد… شاید بهترین راه طراحی دستی چاله آسانسور باشد، ولی چون چاله آسانسور ابعاد کوچکی دارد می توان عملکرد آن را با پی یکنواخت در نظر گرفت و پی را کلا در یک تراز طراحی کرد….اگر ابعاد چاله آسانسور بزرگ باشد به صورتی که عملکرد آن مجزا از پی باشد می توان چاله را به صورت یک پی مجزا در نرم افزار مدل و طراحی کرد.

مرحله ۱) آماده سازی کف چاله آسانسور :
الف: جهت نصب آسانسور ارتفاع مورد نیاز از کف چاله تا سطح کف سازی شده اولین توقف آسانسور قبل از بتون ریزی کف چاله حداقل باید ۱۹۰ cm باشد.
ب: در زمان بتون ریزی کف چاله با عنایت به نقشه سکوهای ضربه گیر زیر کابین و زیر قاب وزنه تعادل ۱۰ cm بتون مگر و ۳۰ cm آرماتوربندی و بتون ریزی می شود و ارتفاع باقیمانده نباید کمتر از ۱۵۰ آرماتوربندی و بتون ریزی می شود و ارتفاع باقیمانده نباید کمتر از ۱۵۰cm شود.
ج: جهت اجرای سکوهای ضربه گیر طبق نقشه های اجرای آرماتورهای انتظار جهت سکوهای ضربه گیر در فونداسیون مذکور پیش بینی می شود.
نکته مهم: در این مرحله پیش بینی چاه ارت ضروری است.
جهت چاه ارت (Earth) تا رسیدن به رطوبت لازم زمینی، و وصل کردن سیم مربوطه، می توان از چاه اصلی ساختمان جهت ایجاد چاه ارت استفاده نمود و چنانچه این چاه پیش بینی نشده است، در محل مناسب و نزدیک به آسانسور چاهی به عمق حداقل ۸/۳ متر ایجاد کرد تا به رطوبت زمینی رسید سپس مواد ذیل را طبق دستورالعمل در چاه حفر شده قرار داده و روی آن را می پوشانیم.
نمک ۳۳%
زغال ۳۳%
پتاسیم ۳۳%
سیم مسی بدون روکش به متراژ مناسب جهت محل مورد انتقال
میله مسی و صفحه مسی ( در بازار به صورت یک مجموعه وجود دارد)
مرحله ۲) تهیه نقشه :
چناچه ساختمان در حال احداث می باشد و دسترسی دقیق به ابعاد مورد نیاز چاهک میسر نباشد، نقشه های زیر لازم است
پلان تیپ طبقات شامل پارکینگ – زیر زمین – همکف و طبقات در محل نصب آسانسور
مقطع از چاهک آسانسور با ذکر اندازه های کامل از کف چاله آسانسور تا زیر سقف موتورخانه
پلان پشت بام ساختمان در محدوده چاهک آسانسور به منظور بررسی تأسیسات و تجهیزات احتمالی موجود در اطراف چاهک به شرکت طرف قرارداد ارائه شود

مرحله ۳) بتون ریزی کف چاهک:
همانطوریکه در مرحله ۱ اشاره شده پس از تکمیل مدارک مورد نیاز (در مرحله ۲) با توجه به شرایط ساختمان و نوع آسانسور طرح اجرایی بتون ریزی کف چاهک به شرح ذیل به کارفرما ارائه خواهد شد.
بتون مگر ۱۰ سانتیمتر
بتون آرمه کف و آرماتور بندی ۳۰ سانتیمتر
مرحله ۴ ) عملیات آهن کشی( سازه فلزی) چاهک آسانسور:
آهن کشی عبارت است از سازه فلزی در داخل چاهش آسانسور جهت استقرار براکت های مورد نیاز ریل های کابین و ریل های وزنه بر اساس نقشه طراحی شده توسط فروشنده آسانسور که بشرح زیر می باشد:
تهیه نقشه اجرایی آهن کشی کامل چاهک
تهیه لیست آهن آلات مورد نیاز
نصب داربست فلزی مناسب جهت اجرای آهن کشی
انجام آهن کشی با نظارت نماینده فنی شرکت فروشنده یا دستگاه نظارت ساختمان
اجرای ضد زنگ آهن آلات پس از صدور گواهی انجام کار آهن کشی

مرحله ۵ )دیوارکشی اطراف چاهک (در صورتیکه قبل از آهن کشی انجام نشده باشد)
الف: سه طرف چاهک (سمت راست – روبرو – سمت چپ) می بایستی بوسیله دیوارکشی از کف تمام شده اولین توقف تا اطاقک موتورخانه بر روی پشت بام اجرا گردد.
ممکن است دیوارکشی با یکی از روش های زیر برحسب شرایط ساختمان انجام پذیرد:
ورق کشی: که به تناسب فضا از ورق های فلزی _ یا پانل های گچی استفاده می شود
رابتیس بندی: با استفاده از تورهای فلزی مخصوص و اندود کاری روی آن
ب: انجام اندود دیوار از طرف داخل چاهک بوسیله سیمان – یا خاک و گچ

توضیح:
اگر عملیات کلاف بندی آهن کشی در پشت ستونها و در داخل دیوار قرار می گیرد می بایستی در محل نصب براکت ها بر روی کلافهای افقی فضای خالی مناسب پیش بینی شود تا از تخریب بعدی جلوگیری شود.
جهت اجرای مناسب مورد فوق بر اساس نقشه های درب و ریل که توسط فروشنده آسانسور تهیه می شود امکان پذیر خواهد بود.
در این مرحله اجرای روشنایی داخل چاهک طبق دستورالعمل مربوطه باید انجام شود.

مرحله ۶)ایجاد موتورخانه:
اطاق موتورخانه بر حسب ابعاد و نقشه اجرایی فروشنده اجرا می گردد و رعایت ابعاد و اندازه های زیر الزامی است:
ارتفاع از روی کف تمام شده آخرین توقف تا زیر سقف اطاق موتورخانه حداقل نباید کمتر از ۶ متر باشد.
اطاق موتورخانه باید درب با عرض ورودی حداقل ۸۰cm داشته باشد.
اطاق موتورخانه باید دارای پنجره جهت تهویه باشد.
نصب هواکش مناسب در موتورخانه(حداقل با فن ۲۵۰ CFM )
نصب قلاب فلزی در بالای چاهک آسانسور روی سقف موتورخانه مناسب برای حداقل ۲۰۰۰ kg وزن
فضای موتورخانه همیشه باید دمای مناسب داشته باشد (بین ۵ الی ۴۰ درجه سانتیگراد)
نصب کپسول آتش نشانی
نصب تابلو برق سه فاز طبق مشخصات مورد تأیید شرکت فروشنده آسانسور در موتورخانه
اجرای کابل کشی برق سه فاز تا موتورخانه جهت نصب به تابلو برق سه فاز
چنانچه دو آسانسور در کنار هم قرار دارند باید دریچه ای (Trap Door)به ابعاد حداقل ۸۰×۱۰۰ cm در سقف موتورخانه (بالای فضای مقابل درب ورودی آسانسور در طبقه آخر ) تعبیه گردد.
زیر سقف چاهک در موتورخانه آسانسورهای دوبله دریچه ای به ابعاد ۶۰×۵۰cm برای هر آسانسور تعبیه گردد.

مرحله ۷) دورچینی درب طبقات:
بعد از اتمام نصب ریل و درب و کنترل نهایی عملیات توسط عوامل فنی و تأیید آن باید موارد ذیل انجام شود:
اجرای دیوار چینی دور دربها بوسیله آجر یا بلوک یا پوشش های فلزی
پوشش به هر صورتیکه انجام می شود نبایستی از لبه داخلی دربها در سمت چاهک تجاوز نماید و حداقل باید با لبه چهارچوب دربها همسطح باشد
مرحله ۸) اجرای کابل کشی و نصب تابلو برق سه فاز:
همانطوریکه در بند ۸و۹ مرحله ۶ آمده است اجرای کابل کشی و نصب تابلو برق سه فاز از اولویت خاصی برخوردار می باشد و لذا به شرح ذیل باید اقدام گردد:
نصب کابل برق سه فاز از محل نصب کنتور تا موتورخانه آسانسور
نصب سیم ارت (Earth)
چنانچه فاصله کنتور تا محل نصب تابلو برق سه فاز بیش از اندازه های استاندارد می باشد باید محاسبه شده در سایز کابل تغییرات لحاظ گردد.
در فاصله های استاندارد از کابل ۵×۱۶ mm برای آسانسورهای ۸ و ۱۳ نفره و از کابل ۵×۱۰ mm جهت آسانسورهای ۴و۶ نفره استفاده می گردد.
تجهیزات لازم که باید در تابلو برق سه فاز تعبیه گردد.
سه عدد فیوز ۲۵ A برای آسانسورهای ۴و۶ نفره
سه عدد فیوز ۵۰ A برای آسانسورهای ۸و۱۳ نفره و باری
کلید گردان ۶۳ A
سه عدد چراغ زیگنال
نصب پریز و فیوز مینیاتوری جهت روشنایی موتورخانه – روشنایی داخل چاهک و فن موتورخانه
تعبیه ترموستات جهت تنظیم دمای موتورخانه و فن
مرحله ۹)بتون ریزی سقف چاهک

[تصویر:  succaf84c097pn67j8m.jpg]
[تصویر:  1kb9jbub21qt5coq67.jpg]